
Users Guide V7.2
From GATE collaborative documentation wiki

Introduction

General Concept
Getting started
Defining a geometry
Materials
Setting up the physics
Cut and Variance Reduction Techniques
Source and particle management
Voxelized Source and Phantom
How to run Gate
Visualization
Bibliography

Imaging applications
Architecture of the simulation
Defining a system
Sensitive detector concept
Digitizer and detector modeling
Data output management
Generating and tracking optical photons

Radiotherapy applications
Architecture of the simulation
Readout parameters for Radiotherapy applications: Actors
Phase space concept
Examples of Radiation Therapy Applications

Parallel Computing
How to use Gate on a Cluster
How to use Gate on a GPU

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2"

This page was last modified on 8 February 2016, at 12:10.

Users Guide V7.2:Introduction
From GATE collaborative documentation wiki

Geant4 Application for Emission Tomography: a simulation toolkit for PET and SPECT

OpenGATE Collaboration

http://www.opengatecollaboration.org

Authors

OpenGATE spokesperson: I. Buvat (IMIV UMR1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS
Orsay)

OpenGATE technical coordinator: S. Jan (IMIV UMR1023 Inserm-CEA-Université Paris Sud, ERL 9218
CNRS Orsay)

Editorial board at the time of the first Users Guide version (2004) S. Glick (UMASS), S. Kerhoas (CEA
Saclay), F. Mayet (CNRS-LPSC Grenoble)

Authors of the first edition (2004) : S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R.
Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou,
Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P.-F.

Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G.
Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J.
Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J.-M.
Vieira, D. Visvikis, R. Van de Walle, E. Wieers, C. Morel

Special Thanks: Geant4 Collaboration and LOW energy WG

The GATE mailing list

You are encouraged to participate in the dialog and post your suggestions, questions and answers to
colleagues' questions on the gate-users mailing list, the GATE mailing list for users. You can subscribe to the
gate-users mailing list, by registering at the GATE web site: http://www.opengatecollaboration.org

If you have a question, it is very likely that it has already been asked and answered, and is now stored in the
archives. Please use the search engine to see if your question has already been answered before sending a
mail to the GATE-users .

Forewords

Monte Carlo simulation is an essential tool in emission tomography to assist in the design of new medical
imaging devices, assess new implementations of image reconstruction algorithms and/or scatter correction
techniques, and optimise scan protocols. Although dedicated Monte Carlo codes have been developed for
Positron Emission Tomography (PET) and for Single Photon Emission Computerized Tomography
(SPECT), these tools suffer from a variety of drawbacks and limitations in terms of validation, accuracy,
and/or support (Buvat). On the other hand, accurate and versatile simulation codes such as GEANT3 (G3),
EGS4, MCNP, and GEANT4 have been written for high energy physics. They all include well-validated
physics models, geometry modeling tools, and efficient visualization utilities. However these packages are
quite complex and necessitate a steep learning curve.

GATE, the GEANT4 Application for Emission Tomography (MIC02, Siena02, ITBS02, GATE, encapsulates
the GEANT4 libraries in order to achieve a modular, versatile, scripted simulation toolkit adapted to the field
of nuclear medicine. In particular, GATE provides the capability for modeling time-dependent phenomena
such as detector movements or source decay kinetics, thus allowing the simulation of time curves under
realistic acquisition conditions.

GATE was developed within the OpenGATE Collaboration with the objective to provide the academic
community with a free software, general-purpose, GEANT4-based simulation platform for emission
tomography. The collaboration currently includes 21 laboratories fully dedicated to the task of improving,
documenting, and testing GATE thoroughly against most of the imaging systems commercially available in
PET and SPECT (Staelens, Lazaro).

Particular attention was paid to provide meaningful documentation with the simulation software package,
including installation and user's guides, and a list of FAQs. This will hopefully make possible the long term
support and continuity of GATE, which we intend to propose as a new standard for Monte Carlo simulation
in nuclear medicine.

In name of the OpenGATE Collaboration

Christian MOREL CPPM CNRS/IN2P3, Marseille

Member institutes of the OpenGATE Collaboration (May 2015):

CNRS Laboratory of Corpuscular Physics @ Clermont-Ferrand (LPC)
CNRS Centre de Physique des Particules de Marseille (CPPM), Marseille
CNRS Imaging and Modelling in Neurobiology and Cancerology lab @ Orsay (IMNC), Orsay
CNRS IRES, Centre Pluridisciplinaire Hubert Curien (CPHC) @ Strasbourg
CNRS Laboratoire de Physique Subatomique et des technologies associées (SUBATECH), Nantes
INSERM - CNRS CREATIS lab @ Lyon
U892 INSERM @ Nantes
LATIM, U1101 INSERM, Brest
IMIV, UMR1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS, Service Hospitalier Frédéric
Joliot (SHFJ), Orsay
Sungkyunkwan University School of Medicine (DMN), Seoul
Forschungszentrum-Juelich (IME)
Memorial Sloan-Kettering Cancer Center (Department of Medical Physics), New York
University of Athens (IASA)
Delft University of Technology (IRI)
UC Davis, California
MedAustron, Wiener Neustadt
Medical University Vienna, Wien
UMR 1037 INSERM/UPS, Toulouse

Overview

GATE combines the advantages of the GEANT4 simulation toolkit well-validated physics models,
sophisticated geometry description, and powerful visualization and 3D rendering tools with original features
specific to emission tomography. It consists of several hundred C++ classes. Mechanisms used to manage
time, geometry, and radioactive sources form a core layer of C++ classes close to the GEANT4 kernel
[Figure 1]. An application layer allows for the implementation of user classes derived from the core layer
classes, e.g. building specific geometrical volume shapes and/or specifying operations on these volumes like
rotations or translations. Since the application layer implements all appropriate features, the use of GATE
does not require C++ programming: a dedicated scripting mechanism - hereafter referred to as the macro
language - that extends the native command interpreter of GEANT4 makes it possible to perform and to
control Monte Carlo simulations of realistic setups.

Figure 1: Structure of GATE

One of the most innovative features of GATE is its capability to synchronize all time-dependent components
in order to allow a coherent description of the acquisition process. As for the geometry definition, the

elements of the geometry can be set into movement via scripting. All movements of the geometrical
elements are kept synchronized with the evolution of the source activities. For this purpose, the acquisition
is subdivided into a number of time-steps during which the elements of the geometry are considered to be at
rest. Decay times are generated within these time-steps so that the number of events decreases exponentially
from time-step to time-step, and decreases also inside each time-step according to the decay kinetics of each
radioisotope. This allows for the modeling of time-dependent processes such as count rates, random
coincidences, or detector dead-time on an event-by-event basis. Moreover, the GEANT4 interaction histories
can be used to mimic realistic detector output. In GATE, detector electronic response is modeled as a linear
processing chain designed by the user to reproduce e.g. the detector cross-talk, its energy resolution, or its
trigger efficiency.

The first users guide was organized as follow: chapter 1 of this document guides you to get started with
GATE. The macro language is detailed in Chapter 2. Visualisation tools are described in Chapter 3. Then,
Chapter 4 illustrates how to define a geometry by using the macro language, Chapter 5 how to define a
system, Chapter 6 how to attach sensitive detectors, and Chapter 7 how to set up the physics used for the
simulation. Chapter 8 discusses the different radioactive source definitions. Chapter 9 introduces the
digitizer which allows you to tune your simulation to the very experimental parameters of your setup.
Chapter 10 draws the architecture of a simulation. Data output are described in Chapter 11. Finally, Chapter
12 gives the principal material definitions available in GATE. Chapter 13 illustrates the interactive, bathc, or
cluster modes of running GATE.

Actually, the users guide is based on a wiki page and all chapters and informations are pointed on the
following link: Users Guide V7.2.

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Introduction"

This page was last modified on 8 February 2016, at 12:11.

Users Guide V7.2:Getting started
From GATE collaborative documentation wiki

Table of Contents
General simulation architecture for imaging applications
General simulation architecture for dosimetry and radiotherapy applications
The user interface: a macro language
First step: Defining a scanner geometry
Second step: Defining a phantom geometry
Third step: Setting-up the physics processes
Fourth step: Initialization
Fifth step: Setting-up the digitizer
Sixth step: Setting-up the source
Seventh step: Defining data output
Eighth step: Starting an acquisition

This paragraph is an overview of the main steps one must go through to perform a simulation using Gate for
imaging applications (PET, SPECT and CT). It is presented in the form of a simple example and the user is
encouraged to try out the example, in an interactive mode of Gate, while reading this section. A more
detailed description of the different steps is given in the following sections of this user's guide. The use of
Gate does not require any C++ programming, thanks to a dedicated scripting mechanism that extends the
native command interpreter of Geant4. This interface allows the user to run Gate programs using command
scripts only. The goal of this first section is to give a brief description of the user interface and to provide a
basic understanding of the basic principles of Gate by going through the different steps of a simulation.

General simulation architecture for imaging applications
In each simulation, the user has to:

1. define the scanner geometry
2. define the phantom geometry
3. set up the physics processes
4. initialize the simulation
5. set up the detector model
6. define the source(s)
7. specify the data output format
8. start the acquisition

Steps 1) to 4) concern the initialization of the simulation.

Following the initialization, the geometry can no longer be changed. The following paragraph will illustrate
these different steps.

General simulation architecture for dosimetry and radiotherapy
applications

1. define the beam geometry
2. define the phantom geometry
3. specify the output (actor concept for dose map etc...)
4. set up the physics processes
5. initialize the simulation
6. define the source(s)
7. start the simulation with the following command lines
8. /gate/application/setTotalNumberOfPrimaries [particle_number]
9. /gate/application/start

The user interface: a macro language
Gate, just as GEANT4, is a program in which the user interface is based on scripts. To perform actions, the
user must either enter commands in interactive mode, or build up macro files containing an ordered
collection of commands.

Each command performs a particular function, and may require one or more parameters. The Gate
commands are organized following a tree structure, with respect to the function they represent. For example,
all geometry-control commands start with geometry, and they will all be found under the /geometry/ branch
of the tree structure.

When Gate is run, the Idle> prompt appears. At this stage the command interpreter is active; i.e. all the Gate
commands entered will be interpreted and processed on-line. All functions in Gate can be accessed to using
command lines. The geometry of the system, the description of the radioactive source(s), the physical
interactions considered, etc., can be parameterized using command lines, which are translated to the Gate
kernel by the command interpreter. In this way, the simulation is defined one step at a time, and the actual
construction of the geometry and definition of the simulation can be seen on-line. If the effect is not as
expected, the user can decide to re-adjust the desired parameter by re-entering the appropriate command on-
line. Although entering commands step by step can be useful when the user is experimenting with the
software or when he/she is not sure how to construct the geometry, there remains a need for storing the set of
commands that led to a successful simulation.

Macros are ASCII files (with '.mac' extension) in which each line contains a command or a comment.
Commands are GEANT4 or Gate scripted commands; comments start with the character ' #'. Macros can be
executed from within the command interpreter in Gate, or by passing it as a command-line parameter to
Gate, or by calling it from another macro. A macro or set of macros must include all commands describing
the different components of a simulation in the right order. Usually these components are visualization,
definitions of volumes (geometry), systems, digitizer, physics, initialization, source, output and start. These
steps are described in the next sections. A single simulation may be split into several macros, for instance
one for the geometry, one for the physics, etc. Usually, there is a master macro which calls the more specific
macros (see Users Guide V7.2:Architecture of the simulation). Splitting macros allows the user to re-use one
or more of these macros in several other simulations, and/or to organize the set of all commands. Examples
of complete macros can be found on the web site referenced above. To execute a macro (mymacro.mac in
this example) from the Linux prompt, just type :

Gate mymacro.mac

To execute a macro from inside the Gate environment, type after the "Idle>" prompt:

Idle>/control/execute mymacro.mac

Fig 1.1: World volume.

And finally, to execute a macro from inside another macro, simply write in the master macro:

/control/execute mymacro.mac

In the following paragraphs, the main steps to perform a simulation using Gate are explained. To test this
example, the user can run Gate and can execute all the commands proposed in this section, line by line.

First step: Defining a scanner geometry
The first command lines entered at the Gate prompt usually concern the graphical interface. For on-line
verification of the geometry being built, a visualization tool needs to be installed, using the following
commands.

V I S U A L I Z A T I O N
/vis/open OGLSX
/vis/viewer/reset
/vis/viewer/set/viewpointThetaPhi 60 60
/vis/viewer/zoom 1
/vis/viewer/set/style surface
/vis/drawVolume
/tracking/storeTrajectory 1
/vis/scene/endOfEventAction accumulate
/vis/viewer/update

The different visualization tools and associated commands
are discussed in Users Guide V7.2:Visualization. The
visualization being set, the user needs to define the
geometry of the simulation based on volumes. All
volumes are linked together following a tree structure
where each branch represents a volume. Each volume is
characterized by shape, size, position, and material
composition. The default material assigned to a new
volume is Air. The list of available materials is defined in
the GateMaterials.db file. (See Users Guide V7.2:Materials). The location of the material database needs to
be specified with the following command:

/gate/geometry/setMaterialDatabase MyMaterialDatabase.db

The base of the tree is represented by the world volume (fig 1.1) which sets the experimental framework of
the simulation. All Gate commands related to the construction of the geometry are described in detail in
Users Guide V7.2:Defining a geometry. The world volume is a box centered at the origin. It can be of any
size and has to be large enough to include the entire simulation geometry. The tracking of any particle stops
when it escapes from the world volume. The example given here simulates a system that fits into a box of 40
x 40 x 40 cm3. Thus, the world volume may be defined as follows:

W O R L D /gate/world/geometry/setXLength 40. cm
/gate/world/geometry/setYLength 40. cm
/gate/world/geometry/setZLength 40. cm

The world contains one or more sub volumes referred to as daughter volumes.

Figure 1.2: Cylindrical scanner

/gate/world/daughters/name vol_name

The name vol_name of the first daughter of the world has a specific meaning and name. It specifies the type
of scanner to be simulated. Users Guide V7.2:Defining a system gives the specifics of each type of scanner,
also called system. In the current example, the system is a CylindricalPET system. This system assumes that
the scanner is based on a cylindrical configuration (fig 1.2) of blocks, each block containing a set of crystals.

S Y S T E M
/gate/world/daughters/name cylindricalPET
/gate/world/daughters/insert cylinder
/gate/cylindricalPET/setMaterial Water
/gate/cylindricalPET/geometry/setRmax 100 mm
/gate/cylindricalPET/geometry/setRmin 86 mm
/gate/cylindricalPET/geometry/setHeight 18 mm
/gate/cylindricalPET/vis/forceWireframe
/vis/viewer/zoom 3

These seven command lines describe the global geometry
of the scanner. The shape of the scanner is a cylinder filled
with water with an external radius of 100 mm and an
internal radius of 86 mm. The length of the cylinder is 18
mm. The last command line sets the visualization as
wireframe.

You may see the following message when creating the
geometry:

G4PhysicalVolumeModel::Validate() called.
Volume of the same name and copy number ("world_phys", copy 0) still exists and is being used.
WARNING: This does not necessarily guarantee it's the same
volume you originally specified in /vis/scene/add/.

This message is normal and you can safely ignore it.

At any time, the user can list all the possible commands. For example, the command line for listing the
visualization commands is:

Idle> ls /gate/cylindricalPET/vis/

Let's assume that the scanner is made of 30 blocks (box1), each block containing textstyle 8 times 8 LSO
crystals (box2).

The following command lines describe this scanner (see Users Guide V7.2:Defining a geometry to find a
detailed explanation of these commands). First, the geometry of each block needs to be defined as the
daughter of the system (here cylindricalPET system).

FIRST LEVEL OF THE SYSTEM
/gate/cylindricalPET/daughters/name box1
/gate/cylindricalPET/daughters/insert box
/gate/box1/placement/setTranslation 91. 0 0 mm
/gate/box1/geometry/setXLength 10. mm
/gate/box1/geometry/setYLength 17.75 mm
/gate/box1/geometry/setZLength 17.75 mm

Figure 1.3: first level of the scanner

Figure 1.4: crystal, daughter of the block

/gate/box1/setMaterial Water
/gate/box1/vis/setColor yellow
/gate/box1/vis/forceWireframe

Once the block is created (figure 1.3), the crystal can be
defined as a daughter of the block (figure 1.4)

The zoom command line in the script allows the user to
zoom the geometry and the panTo command translates the
viewer window in 60 mm in horizontal and 40 mm in
vertical directions (the default is the origin of the world
(0,0)).

To obtain the complete matrix of crystals, the volume box2
needs to be repeated in the Y and Z directions (fig 1.5). To
obtain the complete ring detector, the original block is
repeated 30 times (fig 1.6).

C R Y S T A L
/gate/box1/daughters/name box2
/gate/box1/daughters/insert box
/gate/box2/geometry/setXLength 10. mm
/gate/box2/geometry/setYLength 2. mm
/gate/box2/geometry/setZLength 2. mm
/gate/box2/setMaterial LSO
/gate/box2/vis/setColor red
/gate/box2/vis/forceWireframe
Z O O M
/vis/viewer/zoom 4
/vis/viewer/panTo 60 -40 mm

R E P E A T C R Y S T A L
/gate/box2/repeaters/insert cubicArray
/gate/box2/cubicArray/setRepeatNumberX 1
/gate/box2/cubicArray/setRepeatNumberY 8
/gate/box2/cubicArray/setRepeatNumberZ 8
/gate/box2/cubicArray/setRepeatVector 0. 2.25 2.25 mm

The geometry of this simple PET scanner has now been
specified. The next step is to connect this geometry to the
system in order to store data from particle interactions
(called hits) within the volumes which represent detectors
(sensitive detector or physical volume). Gate only stores hits for those volumes attached to a sensitive
detector. Hits regarding interactions occurring in non-sensitive volumes are lost. A volume must belong to a
system before it can be attached to a sensitive detector. Hits, occurring in a volume, cannot be scored in an
output file if this volume is not connected to a system because this volume can not be attached to a sensitive
detector. The concepts of system and sensitive detector are discussed in more detail in Users Guide
V7.2:Defining a system and Users Guide V7.2:Attaching the sensitive detectors respectively.

The following commands are used to connect the volumes to the system.

R E P E A T R S E C T O R
/gate/box1/repeaters/insert ring
/gate/box1/ring/setRepeatNumber 30

Z O O M
/vis/viewer/zoom 0.25
/vis/viewer/panTo 0 0 mm

Figure 1.5: matrix of crystals

Figure 1.6: complete ring of 30 block detectors

A T T A C H Volumes To a S Y S T E M
/gate/systems/cylindricalPET/rsector/attach box1
/gate/systems/cylindricalPET/module/attach box2

The names rsector and module are dedicated names and
correspond to the first and the second levels of the
cylindricalPET system (see Users Guide V7.2:Defining a
system).

In order to save the hits (see Users Guide V7.2:Digitizer and
readout parameters) in the volumes corresponding to the
crystals the appropriate command, in this example, is:

Define a S E N S I T I V E Detector
/gate/box2/attachCrystalSD vglue 1cm

At this level of the macro file, the user can implement detector
movement. One of the most distinctive features of Gate is
the management of time-dependent phenomena, such as
detector movements and source decay leading to a coherent
description of the acquisition process. For simplicity, the
simulation described in this tutorial does not take into
account the motion of the detector or the phantom. Users
Guide V7.2:Defining a geometry describes the movement of
volumes in detail.

Second step: Defining a phantom
geometry
The volume to be scanned is built according to the same
principle used to build the scanner. The external envelope of
the phantom is a daughter of the world. The following
command lines describe a cylinder with a radius of 10 mm
and a length of 30 mm. The cylinder is filled with water and
will be displayed in gray. This object represents the
attenuation medium of the phantom.

P H A N T O M
/gate/world/daughters/name my_phantom
/gate/world/daughters/insert cylinder
/gate/my_phantom/setMaterial Water
/gate/my_phantom/vis/setColor grey
/gate/my_phantom/geometry/setRmax 10. mm
/gate/my_phantom/geometry/setHeight 30. mm

To retrieve information about the Compton and the Rayleigh interactions within the phantom, a sensitive
detector (phantomSD) is associated with the volume using the following command line:

P H A N T O M defined as S E N S I T I V E
/gate/my_phantom/attachPhantomSD

Figure 1.7: cylindrical phantom

Two types of information will now be recorded for each hit
in the hit collection:

The number of scattering interactions generated in all
physical volumes attached to the phantomSD.
The name of the physical volume attached to the
phantomSD in which the last interaction occurred.

These concepts are further discussed in Users Guide
V7.2:Attaching the sensitive detectors.

Third step: Setting-up the physics
processes
Once the volumes and corresponding sensitive detectors are
described, the interaction processes of interest in the
simulation have to be specified. Gate uses the GEANT4
models for physical processes. The user has to choose among
these processes for each particle. Then, user can customize the simulation by setting the production
thresholds, the cuts, the electromagnetic options...

Some typical physics lists are available in the directory examples/PhysicsLists:

egammaStandardPhys.mac (physics list for photons, e- and e+ with standard processes and
recommended Geant4 "option3")
egammaLowEPhys.mac (physics list for photons, e- and e+ with low energy processes)
egammaStandardPhysWithSplitting.mac (alternative egammaStandardPhys.mac with selective
bremsstrahlung splitting)
hadrontherapyStandardPhys.mac (physics list for hadrontherapy with standard processes and
recommended Geant4 "option3")
hadrontherapyLowEPhys.mac (physics list for hadrontherapy with low energy processes)

The details of the interactions processes, cuts and options available in Gate are described in Users Guide
V7.2:Setting up the physics.

Fourth step: Initialization
When the 3 steps described before are completed, corresponding to the pre-initialization mode of GEANT4,
the simulation should be initialized using:

I N I T I A L I Z E
/gate/run/initialize

This initialization actually triggers the calculation of the cross section tables. After this step, the physics list
cannot be modified any more and new volumes cannot be inserted into the geometry.

Fifth step: Setting-up the digitizer
The basic output of Gate is a hit collection in which data such as the position, the time and the energy of

each hit are stored. The history of a particle is thus registered through all the hits generated along its track.
The goal of the digitizer is to build physical observables from the hits and to model readout schemes and
trigger logics. Several functions are grouped under the Gate digitizer object, which is composed of different
modules that may be inserted into a linear signal processing sequence. As an example, the following
command line inserts an adder to sum the hits generated per elementary volume (a single crystal defined as
box2 in our example).

/gate/digitizer/Singles/insert adder

Another module can describe the readout scheme of the simulation. Except when one crystal is read out by
one photo-detector, the readout segmentation can be different from the elementary geometrical structure of
the detector. The readout geometry is an artificial geometry which is usually associated with a group of
sensitive detectors. In this example, this group is box1.

/gate/digitizer/Singles/insert readout
/gate/digitizer/Singles/readout/setDepth 1

In this example, the readout module sums the energy deposited in all crystals within the block and
determines the position of the crystal with the highest energy deposited ("winner takes all"). The setDepth
command specifies at which geometry level (called "depth") the readout function is performed. In the
current example:

base level (CylindricalPET) = depth 0
1srt daughter (box1) of the system = depth 1
next daughter (box2) of the system = depth 2
and so on

In order to take into account the energy resolution of the detector and to collect singles within a pre-defined
energy window only, other modules can be used:

ENERGY BLURRING
/gate/digitizer/Singles/insert blurring
/gate/digitizer/Singles/blurring/setResolution 0.19
/gate/digitizer/Singles/blurring/setEnergyOfReference 511. keV

ENERGY WINDOW
/gate/digitizer/Singles/insert thresholder
/gate/digitizer/Singles/thresholder/setThreshold 350. keV
/gate/digitizer/Singles/insert upholder
/gate/digitizer/Singles/upholder/setUphold 650. keV

Here, an energy resolution of 19% at 551 KeV is considered.

Furthermore, the energy window is set from 350 keV to 600 keV.

For PET simulations, the coincidence sorter is also implemented at the digitizer level.

C O I N C I D E N C E S O R T E R
/gate/digitizer/Coincidences/setWindow 10. ns

Other digitizer modules are available in Gate and are described in Users Guide V7.2:Digitizer and readout
parameters.

Sixth step: Setting-up the source
In Gate, a source is represented by a volume in which the particles (positron, gamma, ion, proton, ...) are
emitted. The user can define the geometry of the source and its characteristics such as the direction of
emission, the energy distribution, and the activity. The lifetime of unstable sources (radioactive ions) is
usually obtained from the GEANT4 database, but it can also be set by the user.

A voxelized phantom or a patient dataset can also be used to define the source, in order to simulate realistic
acquisitions. For a complete description of all functions to define the sources, see
Users_Guide_V7.2:Voxelized_Source_and_Phantom.

In the current example, the source is a 1 MBq line source. The line source is defined as a cylinder with a
radius of 0.5 mm and a length of 50 mm. The source generates pairs of 511 keV gamma particles emitted
'back-to-back' (for a more realistic source model, the range of the positron and the non collinearity of the
two gammas can also be taken into account).

S O U R C E
/gate/source/addSource twogamma
/gate/source/twogamma/setActivity 100000. becquerel
/gate/source/twogamma/setType backtoback

Position
/gate/source/twogamma/gps/centre 0. 0. 0. cm

particle
/gate/source/twogamma/gps/particle gamma
/gate/source/twogamma/gps/energytype Mono
/gate/source/twogamma/gps/monoenergy 0.511 MeV

TYPE= Volume or Surface
/gate/source/twogamma/gps/type Volume

SHAPE= examples Sphere or Cylinder
/gate/source/twogamma/gps/shape Cylinder
/gate/source/twogamma/gps/radius 0.5 mm
/gate/source/twogamma/gps/halfz 25 mm

Set the angular distribution of emission
/gate/source/twogamma/gps/angtype iso

Set min and max emission angles
/gate/source/twogamma/gps/mintheta 0. deg
/gate/source/twogamma/gps/maxtheta 180. deg
/gate/source/twogamma/gps/minphi 0. deg
/gate/source/twogamma/gps/maxphi 360. deg
/gate/source/list

Seventh step: Defining data output
By default, the data output formats for all systems used by Gate are ASCII and ROOT as described in the
following command lines:

ASCII Output format
/gate/output/ascii/enable
/gate/output/ascii/setFileName test
/gate/output/ascii/setOutFileHitsFlag 0
/gate/output/ascii/setOutFileSinglesFlag 1
/gate/output/ascii/setOutFileCoincidencesFlag 1
ROOT Output format

/gate/output/root/enable
/gate/output/root/setFileName test
/gate/output/root/setRootSinglesFlag 1
/gate/output/root/setRootCoincidencesFlag 1

Given this script, several ASCII files (.dat extension) and A ROOT file (test.root) will be created. Users
Guide V7.2:Data output explains how to read the resulting files.

For some scanner configurations, the events may be stored in a sinogram format or in List Mode Format
(LMF). The sinogram output module stores the coincident events from a cylindrical scanner system in a set
of 2D sinograms according to the parameters set by the user (number of radial bins and angular positions).
One 2D sinogram is created for each pair of crystal-rings. The sinograms are stored either in raw format or
ecat7 format. The List Mode Format is the format developed by the Crystal Clear Collaboration (LGPL
licence). A library has been incorporated in Gate to read, write, and analyze the LMF format. A complete
description of all available outputs is given in Users Guide V7.2:Data output .

Eighth step: Starting an acquisition
In the next and final step the acquisition is defined. The beginning and the end of the acquisition are defined
as in a real life experiment. In addition, Gate needs a time slice parameter which defines time period during
which the simulated system is assumed to be static. At the beginning of each time-slice, the geometry is
updated according to the requested movements. During each time-slice, the geometry is kept static and the
simulation of particle transport and data acquisition proceeds. Each slice corresponds to a Geant4 run.

If the sources of the simulation are not radioactive source or is they are not defined activity. User can fix the
total number of events. In this case, the number of particles is splitted between slices in function of the time
of each slice.

/gate/application/setTotalNumberOfPrimaries [N]

User can also fix the same number of event per slice. In this case, each event is weighted by the ratio
between the time slice and the total simulation time.

/gate/application/setNumberOfPrimariesPerRun [N]

Regular time slice approach

This is the standard Gate approach for imaging applications (PET, SPECT and CT). User has to define the
beginning and the end of the acquisition using the commands setTimeStart and setTimeStop. Each slice has
the same duration. User has to define the slice duration (setTimeSlice).

/gate/application/setTimeSlice 1. s
/gate/application/setTimeStart 0. s
/gate/application/setTimeStop 1. s
S T A R T the A C Q U I S I T I O N
/gate/application/startDAQ

The number of projections or runs of the simulation is thus defined by:

Figure 1.8: Simulation is started

In the current example, there is no motion, the acquisition time equals 1 second and the number of
projections equals one.

If you want to exit from the Gate program when the simulation time exceed the time duration, the last line of
your program has to be exit.

Slices with variable time

In this approach, each slice has a specific duration. User has to defined the time of each slice. The first
method is to use a file of time slices:

/gate/application/readTimeSlicesIn [File Name]

the second method is to add each slice with the command:

/gate/application/addSlice [value] [unit]

User has to define the beginning of the acquisition using the command setTimeStart. The end of acquisition
is calculated by summing each time slice. The simulation is started with the commands:

/gate/application/start

or

/gate/application/startDAQ

NOTE: for dosimetry and radiotherapy applications, the general macro set-up should be quite
different - A focus on the dedicated example folder is recommended.

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Getting_started"

This page was last modified on 8 February 2016, at 12:22.

Users Guide V7.2:Defining a geometry
From GATE collaborative documentation wiki

Table of Contents
The world
Creating a volume
Repeating a volume
Placing a volume
Moving a volume
Updating the geometry

The definition of a geometry is a key step in designing a simulation because it is through the geometry
definition that the imaging device and object to be scanned are described. Particles are then tracked through
the components of the geometry. This section explains how to define the different components of the
geometry.

The world

Definition

The world is the only volume already defined in GATE when starting a macro. All volumes are defined as
daughters or grand-daughters of the world. The world volume is a typical example of a GATE volume and
has predefined properties. The world volume is a box centred at the origin. For any particle, tracking stops
when it escapes from the world volume. The world volume can be of any size and has to be large enough to
include all volumes involved in the simulation.

Use

The first volume that can be created must be the daughter of the world volume. Any volume must be
included in the world volume. The geometry is built from the world volume.

Description and modification

The world volume has default parameters: shape, dimensions, material, visibility attributes and number of
children. These parameters can be edited using the following GATE command:

/gate/world/describe

The output of this command is shown in figure 3.1. The parameters associated with the world volume can be
modified to be adapted to a specific simulation configuration. Only the shape of the world volume, which is
a box, cannot be changed. For instance, the X length can be changed from 50 cm to 2 m using:

/gate/world/geometry/setXLength 2. m

Figure 3.1: Description of the default parameters associated with the
world

The other commands needed to modify the world volume attributes will be given in the next sections.

Creating a volume

Generality - Tree creation

When a volume is created with GATE, it automatically appears in the GATE tree (see Users Guide
V7.2:Getting started). All commands applicable to the new volume are then available from this GATE tree.
For instance, if the name of the created volume is Volume_Name, all commands applicable to this volume
start with:

/gate/Volume_Name/

The tree includes the following commands:

setMaterial: To assign a material to the volume
attachCrystalSD: To attach a crystal-SensitiveDetector to the volume
attachPhantomSD: To attach a phantom-SensitiveDetector to the volume
enable: To enable the volume
disable: To disable the volume
describe: To describe the volume

The tree includes sub-trees that relate to different attributes of the volume Volume_Name. The available sub-
trees are:

daughters: To insert a new 'daughter' in the volume
geometry: To control the geometry of the volume
vis: To control the display attributes of the volume
repeaters: To apply a new 'repeater' to the volume
moves: To 'move' the volume
placement: To control the placement of the volume

The commands available in each sub-tree will be described in #Building a volume, #Repeating a volume,
#Placing a volume, #Moving a volume.

Units

Different units are predefined in GATE (see Table 3.1) and shall be referred to using the corresponding
abbreviation. The list of units available in GATE can be edited using:

/units/list

inside the GATE environment (see Users Guide V7.2:Getting started).

Axes

Any position in the world is defined with respect to a three-axis system: X, Y and Z. These three axes can be
seen in the display window using:

/vis/scene/add/axes

Figure 3.2:Three-axis system defined in GATE. The red, green and blue axes are the
X, Y and Z axes respectively

List of units available in GATE and corresponding abbreviations

LENGTH SURFACE VOLUME ANGLE
parsec pc radian rad
kilometer km kilometer2 km2 kilometer3 km3 milliradian mrad

meter m meter2 m2 ``
kilometer3 km3 steradian sr

centimeter cm centimeter2 cm2 centimeter3 cm3 degre deg
millimeter mm millimeter2 mm2 millimeter3 mm3
micrometer mum
nanometer nm
angstrom Ang

TIME SPEED ANGULAR
SPEED ENERGY

second s meter/s m/s radian/s rad/s electronvolt eV
millisecond ms centimeter/s cm/s degree/s deg/s kiloelectronvolt KeV

microsecond mus millimeter/s mm/s megaelectronvolt
MeV

nanosecond ns meter/min m/min radian/min rad/min gigaelectronvolt GeV

picosecond ps centimeter/min
cm/min degree/s deg/s teraelectronvolt TeV

millimeter/min m/min rotation/s rot/s petaelectronvolt PeV
meter/h m/h degree/min deg/min joule j
centimer/h cm/h degree/min deg/min
millimeter/h mm/h rotation/min rot/min
rotation/h rot/h radian/h rad/h

degree/h deg/h
ACTIVITY

DOSE
AMOUNT OF
SUBSTANCE MASS VOLUMIC MASS

becquerel Bq mole mol milligram mg g/cm3 g/cm3
curie Ci mg/cm3 mg/cm3
gray Gy kilogram kg kg/m3 kg/m3

ELECTRIC
CHARGE

ELECTRIC
CURRENT

ELECTRIC
POTENTIAL

MAGNETIC FLUX - MAGNETIC
FLUX DENSITY

eplus e+ ampere A volt V weber Wb
coulomb C milliamper mA kilovolt kV tesla T
microampere muA megavolt MV gauss G
nanoampere nA kilogauss kG

TEMPERATURE FORCE -
PRESSURE POWER FREQUENCY

kelvin K newton N watt W hertz Hz
pascal Pa kilohertz kHz
bar bar megaherz MHz
atmosphere atm

Building a volume

Any new volume must be created as the daughter of another volume (i.e., World volume or another volume
previously created).

Three rules must be respected when creating a new volume:

A volume which is located inside another must be its daughter
A daughter must be fully included in its mother
Volumes must not overlap

Errors in building the geometry yield wrong particle transportation, hence misleading results!

Creating a new volume

To create a new volume, the first step is to give it a name and a mother using:

/gate/mother_Volume_Name/daughters/name Volume_Name

This command prepares the creation of a new volume named Volume_Name which is the daughter of
mother_Volume_Name.

Some names should not be used as they have precise meanings in gate. These names are the names of the
GATE systems (see Users Guide V7.2:Defining a system) currently defined in GATE: scanner, PETscanner,
cylindricalPET, SPECTHead, ecat, CPET, OPET and OpticalSystem.

The creation of a new volume is completed only when assigning a shape to the new volume. The tree

/gate/Volume_Name/

is then generated and all commands in the tree and the sub-trees are available for the new volume.

Different volume shapes are available, namely: box, sphere, cylinder, cone, hexagon, general or extruded
trapezoid, wedge and elliptical tube.

The command line for listing the available shapes is:

/gate/world/daughters/info

The command line for assigning a shape to a volume is:

/gate/mother_Volume_Name/daughters/insert Volume_shape

where Volume_shape is the shape of the new volume.

Volume_shape must necessarily be one of the available names:

box for a box - sphere for a sphere - cylinder for a cylinder - ellipsoid for an ellipsoid - cone for a cone -
eltub for a tube with an elliptical base - hexagone for an hexagon - polycone for a polygon - trap for a

general trapezoid - trpd for an extruded trapezoid and wedge for a wedge

The command line assigns the shape to the last volume that has been named.

The following command lists the daughters of a volume:

/gate/Volume_Name/daughters/list

Example

/gate/world/daughters/name Phantom
/gate/world/daughters/insert box

The new volume Phantom with a box shape is inserted in the World volume.

Defining a size

After creating a volume with a shape, its dimensions are the default dimensions associated with that shape.
These default dimensions can be modified using the sub-tree /geometry/

The commands available in the sub-tree depend on the shape. The different commands for each type of
shape are listed in table 3.2

These commands can be found in the directory

/gate/Volume_Name/geometry (Some volumes visualisation are available here: http://gphysics.net/geant4/geant4-gdml-format.html

BOX TRPD
setXLength: Set the length of the box along the
X axis

setX1Length: Set half length along X of the plane at -dz
position

setYLength: Set the length of the box along the
Y axis

setY1Length: Set half length along Y of the plane at -dz
position

setZLength: Set the length of the box along the
Z axis

setX2Length: Set half length along X of the plane at +dz
position

SPHERE setY2Length: Set half length along Y of the plane at +dz
position

setRmin: Set the internal radius of the sphere (0
for full sphere) setZLength: Set half length along Z of the trapezoid

setRmax: Set the external radius of the sphere setXBoxLength: Set half length along X of the extruded
box

setPhiStart: Set the start phi angle setYBoxLength: Set half length along Y of the extruded
box

setDeltaPhi: Set the phi angular span (2PI for
full sphere)

setZBoxLength: Set half length along Z of the extruded
box

setThetaStart: Set the start theta angle setXBoxPos: Set center position X of the box
setDeltaTheta: Set the theta angular span (2PI
for full sphere) setYBoxPos: Set center position Y of the box

Commands of the sub-tree geometry for different shapes

CYLINDER setZBoxPos: Set center position Z of the box
setRmin: Set the internal radius of the cylinder
(0 for full cylinder) PARALLELEPIPED (... not yet implemented...)

setRmax: Set the external radius of the cylinder setDx: Set Dx dimension of the parallelepiped
setHeight: Set the height of the cylinder setDy: Set Dy dimension of the parallelepiped
setPhiStart: Set the start phi angle setDz: Set Dz dimension of the parallelepiped
setDeltaPhi: Set the phi angular span (2PI for
full cylinder) setAlpha: Set Alpha angle

CONE setTheta: Set Theta angle
setRmin1: Set the internal radius of one side of
the cone (0 for full cone) setPhi: Set Phi angle

setRmax1: Set the external radius of one side of
the cone POLYCONE (... not yet implemented...)

setRmin2: Set the internal radius of one side of
the cone (0 for full cone) setProfile: Set vectors of z, rInner, rOuter positions

setRmax2: Set the external radius of one side of
the cone setPhiStart: Set the start phi angle

setHeight: Set the height of the cone setDeltaPhi: Set the phi angular span (2PI for full cone)
setPhiStart: Set the start phi angle HEXAGONE
setDeltaPhi: Set the phi angular span (2PI for
full cone) setRadius: Set the radius of the hexagon

ELLIPSOID setHeight: Set the height of the hexagon
setXLength: Set the half axis length in the X
direction WEDGE

setYLength: Set the half axis length in the Y
direction

NarrowerXLength: Set the length of the shorter side of
the wedge in the X direction.

setZLength: Set the half axis length in the Z
direction XLength: Set the length of the wedge in the X direction

setZBottomCut: To cut the ellipsoide along the Z
axis YLength: Set the length of the wedge in the Y direction

setZTopCut: To cut the ellipsoide along the Z
axis ZLength: Set the length of the wedge in the Z direction

ELLIPTICAL TUBE
setLong: Set the length of the semimajor axis
setShort: Set the length of the semiminor axis
setHeight: Set the height of the tube

For a box volume called Phantom , the X, Y and Z dimensions can be defined by:

/gate/Phantom/geometry/setXLength 20. cm
/gate/Phantom/geometry/setYLength 10. cm
/gate/Phantom/geometry/setZLength 5. cm

The dimensions of the Phantom volume are then 20 cm, 10 cm and 5 cm along the X, Y and Z axes
respectively.

Defining a material

A material must be associated with each volume. The default material assigned to a new volume is Air. The
list of available materials is defined in the GateMaterials.db file. (see Users Guide V7.0:Materials).

The following command fills the volume Volume_Name with a material called Material:

/gate/Volume_Name/setMaterial Material

Example

/gate/Phantom/setMaterial Water

The Phantom volume is filled with Water.

Defining a color or an appearance

To make the geometry easy to visualize, some display options can be set using the sub-tree /vis/

The commands available in this sub-tree are: setColor, setVisible, setDaughtersInvisible, setLineStyle,
setLineWidth, forceSolid and forceWireframe (see Table 3.3)

Table 3.3: List of commands of the GATE sub-tree geometry
Command Action Argument

setColor Selects the color for the current
volume

white, gray, black, red, green, blue, cyan,
magenta and yellow

setVisible Shows or hides the current volume

setDaughtersInvisible Shows or hides the current volume
daughters

setLineStyle Sets the current volume line-style dashed, dotted and unbroken
setLineWidth Sets the current volume line-width

forceSolid Forces solid display for the current
volume

forceWireframe Forces wireframe display for the
current volume

These commands can be found in the tree /gate/Volume_Name/vis.

Example

/gate/Phantom/vis/setColor blue
/gate/Phantom/vis/forceWireframe

The Phantom volume will be displayed in blue and will be transparent.

Enabling or disabling a volume

A volume cannot be destroyed. The only possible action is to disable it: this makes the volume disappear
from the display window but not from the geometry.

Only the world volume cannot be disabled.

To disable a volume Volume_Name, the command is:

/gate/Volume_Name/disable

The volume Volume_Name can be enabled again using:

/gate/Volume_Name/enable

Example

/gate/Phantom/disable

The Phantom volume is disabled.

Describing a volume

The parameters associated with a volume Volume_name can be listed using:

/gate/Volume_Name/describe

Example

/gate/Phantom/describe

The parameters associated with the Phantom volume are listed.

Examples

How to build a NaI crystal

/gate/mother_Volume_Name/daughters/name crystal
/gate/mother_Volume_Name/daughters/insert box

A volume named crystal is created as the daughter of a volume the shape of which is defined as a box.

/gate/crystal/geometry/setXLength 1. cm
/gate/crystal/geometry/setYLength 40. cm
/gate/crystal/geometry/setZLength 54. cm

The X, Y and Z dimensions of the volume crystal are set to 1 cm, 40 cm, and 54 cm respectively.

/gate/crystal/setMaterial NaI

The new volume crystal is filled with NaI.

Figure 3.3 Side view of an extruded trapezoid based on a
boolean solid. The contours in blue and dashed red
represent the contours of the trapezoid and the box

respectively

/gate/crystal/vis/setColor yellow

The new volume crystal is colored in yellow.

/gate/crystal/describe

The previous command lists the parameters associated with the crystal volume.

/gate/crystal/disable

The crystal volume is disabled

How to build a "trpd" volume

An alternative way of describing complicated geometries is to use a so-called "boolean" volume in order to
describe one piece using a single volume instead of using a mother-children couple. This can make the
description easier and more synthetic. The example below describes how the shape shown in Figure 3.3 can
be defined using a trpd shape, based on a "boolean" volume consisting of a trapezoid "minus" a box:

V I S U A L I S A T I O N
/vis/open OGLSX /vis/viewer/reset
/vis/viewer/viewpointThetaPhi 60 60
/vis/viewer/zoom 1
/vis/viewer/set/style surface
/vis/drawVolume /tracking/storeTrajectory 1
/vis/scene/endOfEventAction accumulate
/vis/viewer/update
/vis/verbose 2
/gate/geometry/enableAutoUpdate
/gate/world/daughters/name Volume_Name
/gate/world/daughters/insert box
/gate/Volume_Name/geometry/setXLength 40 cm
/gate/Volume_Name/geometry/setYLength 40 cm
/gate/Volume_Name/geometry/setZLength 40 cm
/gate/Volume_Name/vis/forceWireframe
/gate/Volume_Name/daughters/name trapeze_name
/gate/Volume_Name/daughters/insert trpd
/gate/trapeze_name/geometry/setX1Length 23.3 mm
/gate/trapeze_name/geometry/setY1Length 21.4 mm
/gate/trapeze_name/geometry/setX2Length 23.3 mm
/gate/trapeze_name/geometry/setY2Length 23.3 mm
/gate/trapeze_name/geometry/setZLength 6. mm
/gate/trapeze_name/geometry/setXBoxPos 0. mm
/gate/trapeze_name/geometry/setYBoxPos 0. m
/gate/trapeze_name/geometry/setZBoxPos 0.7501 mm
/gate/trapeze_name/geometry/setXBoxLength 20.3 mm
/gate/trapeze_name/geometry/setYBoxLength 20.3 mm
/gate/trapeze_name/geometry/setZBoxLength 4.501 mm

The new volume called trapeze_name, which is
the daughter of the Volume_Name volume, is
described with 5+6 parameters. The first 5
parameters relate to the trapezoid, whereas the last 6 parameters describe the extruded volume using a box
shape.

How to build a "Wedge" volume

Figure 3.4: When a wedge is inserted, it is oriented as shown in this figure

Gate provides the class GateTrapCreator to create and insert trapezoidal volumes into the geometry. To
create a trapezoid, the user needs to specify eleven parameters (besides its name and material), which does
not make it easy to use.

To model "slanted" crystals, a new class called GateWedgeCreator (derived from G4Trap) builds right
angular wedges. As shown in Figure 3.4, a wedge is defined by only three parameters that are easily
understood:

1. XLength: is the length of the wedge in the X direction.
2. NarrowerXLength: is the length of the shorter side of the wedge in the X direction.
3. YLength: is the length in the Y direction.
4. ZLength: is the length in the Z direction.

For instance, the following
macro lines insert a wedge
crystal as a daughter of a
module:

/gate/module/daughters/name wedge0
/gate/module/daughters/insert wedge
/gate/wedge0/geometry/setXLength 10 mm
/gate/wedge0/geometry/setNarrowerXLength 8.921 mm
/gate/wedge0/geometry/setYLength 2.1620 mm
/gate/wedge0/geometry/setZLength 2.1620 mm
/gate/wedge0/setMaterial LSO
/gate/wedge0/vis/setColor yellow

Repeating a volume
To create X identical volumes, there is no need to create X different volumes. Only one volume must be
created and then repeated. There are four different ways to repeat a volume: the linear repeater, the ring
repeater, the cubic array repeater and the quadrant repeater.

To list the repeaters defined for the volume Name_Volume, use:

/gate/Name_Volume/repeaters/info

Linear repeater

The linear repeater is appropriate to repeat a volume along a direction (X, Y or Z axis). To use the linear
repeater, first select this type of repeater using:

/gate/Name_Volume/repeaters/insert linear

Then define the number of times N the volume Name_Volume has to be repeated using:

/gate/Name_Volume/linear/setRepeatNumber N

Finally, define the step and direction of the repetition using:

Figure 3.5: Illustration of the application of the linear repeater

/gate/Name_Volume/linear/setRepeatVector 0. 0. dZ. mm

A step of dZ mm along the Z direction is defined.

The "autoCenter" command allows the user to set the position of the repeated volumes:

/gate/Name_Volume/linear/autoCenter true or false

The "true" option centers the group of repeated volumes around the position of the initial volume that has
been repeated.

The "false" option centers the first copy around the position of the initial volume that has been repeated. The
other copies are created by offset. The default option is true.

Example

/gate/hole/repeaters/insert linear
/gate/hole/linear/setRepeatNumber 12
/gate/hole/linear/setRepeatVector 0. 4. 0. cm

The hole volume is repeated
12 times every 4 cm along
the Y axis. The application of
this linear repeater is
illustrated in figure 3.5.

Ring repeater

The ring repeater makes it
possible to repeat a volume
along a ring. It is useful to
build a ring of detectors in
PET.

To select the ring repeater,
use:

/gate/Name_Volume/repeaters/insert ring

To define the number of times
N the volume Name_Volume
has to be repeated, use:

/gate/Name_Volume/ring/setRepeatNumber N

Finally, the axis around which the volume Name_Volume will be repeated must be defined by specifying two
points using:

Figure 3.5: Illustration of the application of the linear repeater

/gate/Name_Volume/ring/setPoint1 0. 1. 0. mm
/gate/Name_Volume/ring/setPoint2 0. 0. 0. mm

The default rotation axis is
the Z axis. Note that the
default ring repetition goes
counter clockwise.

These three commands are
enough to repeat a volume
along a ring over 360°.
However, the repeat action
can be further customized
using one or more of the
following commands. To set
the rotation angle for the first
copy, use:

/gate/Name_Volume/ring/setFirstAngle x deg

The default angle is 0 deg.

To set the rotation angle
difference between the first
and the last copy, use:

/gate/Name_Volume/ring/setAngularSpan x deg

The default angle is 360 deg.

The AngularSpan, the FirstAngle and the RepeatNumber allow one to define the rotation angle difference
between two adjacent copies (AngularPitch).

To set the number of objects in the periodic structure, hence the periodicity, use:

/gate/Name_Volume/ring/setModuloNumber M

When the volume auto-rotation option is enabled, the volume itself is rotated so that its axis remains
tangential to the ring (see Figure 3.6). If this option is disabled, all repeated volumes keep the same
orientation (see Figure 3.7). The commands for enabling or disabling the auto-rotation option are:

/gate/Name_Volume/ring/enableAutoRotation
/gate/Name_Volume/ring/disableAutoRotation

A volume can also be shifted along Z periodically. Each element of a sequence is shifted according to its
position inside the sequence, defined as "j" below. In a sequence composed of MModuloNumber elements, the
shift values are defined as where :

i is the position in the full ring
j =(i % MModuloNumber)+1 is the position in a sequence, starting at 1.

To set a shift and the value of this shift, use:

/gate/Name_Volume/ring/setModuloNumber 1
/gate/Name_Volume/ring/setZShift1 Z mm

Up to 8 shifts and different shift values can be defined (setZShift1 to setZShift8).

Remark: This geometry description conforms to the document "List Mode Format Implementation: Scanner
geometry description Version 4.1 M.Krieguer et al " and is fully described in the LMF output, in particular
in the ASCII header file entry:

z shift sector j mod MModuloNumber : Zshift_j units

Here j (j starting here at 0) stands for the nth. object being shifted each MModuloNumber object. Each shift
value introduced in the command line below corresponds to a new line in the .cch file.

The LMF version 22.10.03 supports a geometry with a cylindrical symmetry. As an example, a repeater
starting at 0 degree and finishing at 90 degree (a quarter of ring) will not be supported by the LMF output.

Example 1

/gate/hole/repeaters/insert ring
/gate/hole/ring/setRepeatNumber 10
/gate/hole/ring/setPoint1 0. 1. 0. mm
/gate/hole/ring/setPoint2 0. 0. 0. mm

The hole volume is repeated 10 times around the Y axis. The application of this ring repeater is illustrated in
figure 3.8.

Figure 3.6: Illustration of the application of the auto-rotation optionFigure 3.8: Illustration of the application of the ring repeater

Figure 3.7: Illustration of the application of the ring-repeater when the auto-rotation
option is disabled

Figure 3.8b: Illustration of the application of the ring repeater

Example 2

/gate/rsector/repeaters/insert ring
/gate/rsector/ring/setRepeatNumber 20
/gate/rsector/ring/setModuloNumber 2
/gate/rsector/ring/setZShift1 -3500 mum
/gate/rsector/ring/setZShift2 +3500 mum
/gate/ rsector /ring/enableAutoRotation

The rsector volume is repeated 20 times along a ring. The sequence length is 2, with the first and the second
volume shifted by -3500 µ m and 3500 µ m respectively. The rsector volume could also include several
volumes itself, each of them being duplicated, which is illustrated in figure 3.9.

Cubic array repeater

The cubic array repeater is appropriate to repeat a volume along one, two or three axes. It is useful to build a
collimator for SPECT simulations.

To select the cubic array repeater, use:

/gate/Name_Volume/repeaters/insert cubicArray

To define the number of times Nx, Ny and Nz the volume Name_Volume has to be repeated along the X, Y

and Z axes respectively, use:

Figure 3.9: Example of a ring repeater with a shift. An array of 3 crystal matrices has
been repeated 20 times with a modulo N=2 shift

/gate/hole/cubicArray/setRepeatNumberX Nx
/gate/hole/cubicArray/setRepeatNumberY Ny
/gate/hole/cubicArray/setRepeatNumberZ Nz

To define the step of the repetition X mm, Y mm and Z mm along the X, Y and Z axes respectively, use:

/gate/hole/cubicArray/setRepeatVector X Y Z mm

The autocentering options are available for the cubic array repeater. If a volume is initially at a position P,
the set of volumes after the repeater has been applied is centered on P if autoCenter is true (default). If
autoCenter is false, the first copy of the group is centered on P.

Example

/gate/hole/repeaters/insert cubicArray
/gate/hole/cubicArray/setRepeatNumberX 1
/gate/hole/cubicArray/setRepeatNumberY 5
/gate/hole/cubicArray/setRepeatNumberZ 2
/gate/hole/cubicArray/setRepeatVector 0. 5. 15. cm

The hole volume is repeated 5 times each 5 cm along the Y axis and twice each 15 cm along the Z axis. The

application of this cubic array repeater is illustrated in figure 3.10.

Figure 3.10: Illustration of the application of the cubic array repeater

Figure 3.10B: Illustration of the application of the cubic array repeater (after)

Quadrant repeater

The quadrant repeater is appropriate to repeat a volume in a triangle-like pattern similar to that of a Derenzo
resolution phantom.

To select the quadrant repeater, use:

/gate/Name_Volume/repeaters/insert quadrant

To define the number of repetition lines, use:

/gate/hole/quadrant/setLineNumber X

To define the orientation of the quadrant (the direction of line repetition), use:

/gate/hole/quadrant/setOrientation N deg

To define the distance between adjacent copies, use:

/gate/hole/quadrant/setCopySpacing xx cm

To define the maximum range of the repeater which is the maximum distance between a copy and the
original volume, use:

/gate/hole/quadrant/setMaxRange xx cm

This command can be used to remove corner-copies that would fall outside your phantom

Example

/gate/hole/repeaters/insert quadrant
/gate/hole/quadrant/setLineNumber 5
/gate/hole/quadrant/setOrientation 90 deg
/gate/hole/quadrant/setCopySpacing 6 cm
/gate/hole/quadrant/setMaxRange 30 cm

The hole volume is repeated in a triangle-like pattern. The application of this quadrant repeater is illustrated
in figure 3.5.

Figure 3.10: Illustration of the application of the cubic array repeater

Figure 3.10b: Illustration of the application of the cubic array repeater (after)

Remark: The repeaters that are applied to the Name_Volume volume can be listed using:

/gate/Name_Volume/repeaters/list

Sphere repeater

The sphere repeater makes it possible to repeat a volume along a spherical ring. It is useful to build rings of
detectors for PET scanners having gantry of spherical shape (e.g. SIEMENS Ecat Accel, Hi-Rez,)

To select the sphere repeater, use:

 /gate/Name_Volume/repeaters/insert sphere

Then, the radius R of the sphere can be set using:

 /gate/Name_Volume /sphere/setRadius X cm

To define the number of times N1 and N2 the volume Name_Volume has to repeated in the transaxial plane
and the axial plane respectively, use:

 /gate/Name_Volume/sphere/setRepeatNumberWithTheta N1
 /gate/Name_Volume/sphere/setRepeatNumberWithPhi N2

To set the rotation angle difference between two adjacent copies in the transaxial direction, use:

/gate/Name_Volume/sphere/setThetaAngle x deg

To set the rotation angle difference between two adjacent copies in the axial direction, use:

/gate/Name_Volume/sphere/setPhiAngle y deg

Figure 3.12: Illustration of the application of the sphere repeater

The replicates of the volume Name_Volume will be placed so that its axis remains tangential to the ring.

Example 3.12

/gate/block/repeaters/insert sphere
/gate/block/sphere/setRadius 25. cm
/gate/block/sphere/setRepeatNumberWithTheta 10
/gate/block/sphere/setRepeatNumberWithPhi 3
/gate/block/setThetaAngle 36 deg
/gate/block/setThetaAngle 20 deg

The block volume is repeated 10 times along the transaxial plane, with a rotation angle between two
neighbouring blocks of 36 deg, and is repeated 3 times in the axial direction with a rotation angle between
two neighbouring blocks of 20 deg. The sphere defined here has a 25 cm radius.

Generic repeater

It is also possible to repeat a volume according to a list of transformations (rotation and translation). The

following macros read the transformations into a simple text file:

/gate/myvolume/repeaters/insert genericRepeater
/gate/myvolume/genericRepeater/setPlacementsFilename data/myvolume.placements
/gate/myvolume/genericRepeater/useRelativeTranslation 1

The text file "myvolume.placements" is composed as follows:

List of placement (translation and rotation)
Column 1 is rotationAngle in degree
Columns 2,3,4 are rotation axis
Columns 5,6,7 are translation in mm
Rotation deg
Translation mm
0 0 1 0 0 0 10
10 0 1 0 0 0 10
15 0 1 0 0 0 20

line with # are ignored
first word must be Rotation or Translation followed with the unity (deg and mm here)
Rotation are described with 4 columns, the first for the angle, three others for the rotation axis
Translation are described with X Y Z.
using "useRelativeTranslation 1" (default) allows to compose the transformation according to the
initial volume translation. If set to 0, the transformation is set as is (in the coordinate system of the
mother volume).

See example here

Placing a volume
The position of the volume in the geometry is defined using the sub-tree

/placement/

Three types of placement are available: translation, rotation and alignment.

Translation

To translate the Name_Volume volume along the X direction by x cm, the command is:

/gate/Name_Volume/placement/setTranslation x. 0. 0. cm

The position is always given with respect to the center of the mother volume.

To set the Phi angle (in XY plane) of the translation vector, use:

/gate/Name_Volume/placement/setPhiOfTranslation N deg

To set the Theta angle (with regard to the Z axis) of the translation vector, use:

Figure 3.13: Illustration of the translation placement

/gate/Name_Volume/placement/setThetaOfTranslation N deg

To set the magnitude of the translation vector, use:

/gate/Name_Volume/placement/setMagOfTranslation xx cm

Example

/gate/Phantom/placement/setTranslation 1. 0. 0. cm
/gate/Phantom/placement/setMagOfTranslation 10. cm

The Phantom volume is placed at 10 cm, 0 cm and 0 cm from the center of the mother volume (here the
world volume). The application of this translation placement is illustrated in figure 3.13.

Rotation

To rotate the Name_Volume
volume by N degrees around the
X axis, the commands are:

/gate/Name_Volume/placement/setRotationAxis X 0 0
/gate/Name_Volume/placement/setRotationAngle N deg
/gate/Name_Volume/placement/setAxis 0 1 0

The default rotation axis is the Z
axis.

Example

/gate/Phantom/placement/setRotationAxis 0 1 0
/gate/Phantom/placement/setRotationAngle 90 deg

The Phantom volume is rotated
by 90 degrees around the Y axis.
The application of this rotation
placement is illustrated in figure
3.14.

Alignment

Using the alignment command, a
volume having an axis of symmetry (cylinder, ellipso, cone and hexagone) can be aligned parallel to one of
the three axes of the axis system.

To align the Name_Volume volume along the X axis, use:

/gate/Name_Volume/placement/alignToX

Illustration of the translation placement

The rotation parameters of
the Name_Volume volume are
then set to +90 degree around
the Y axis.

To align the Name_Volume
volume along the Y axis, use:

/gate/Name_Volume/placement/alignToY

The rotation parameters of
the Name_Volume volume are
then set to -90 degree around
the X axis.

To align the Name_Volume
volume along the Z axis
(default axis of rotation) use:

/gate/Name_Volume/placement/alignToZ

The rotation parameters of
the Name_Volume volume are
then set to 0 degree.

Special example:
Wedge volume and OPET scanner

The wedge is always created as shown in figure 3.4, that is with the slanted plane oriented towards the
positive X direction. If one needs to have it oriented differently, one could, for instance, rotate it:

/gate/wedge0/placement/setRotationAxis 0 1 0
/gate/wedge0/placement/setRotationAngle 180 deg

The center of a wedge in the Y and Z directions are simply

respectively. For the X direction, the center is located such that

where Delta is the length of the wedge across the middle of the Y direction, as shown in Figure 3.15.

Figure 3.14: Illustration of the rotation placement

Figure 3.15: Center of wedge

Wedge crystals are used to
build the OPET scanner, in
which the scanner ring
geometry approximates a
true circular ring.

By knowing the radius
gantry R and the length of
the longest crystal, it is
possible to arrange a series
of 8 crystals with varying the
lengths as shown in Figure
3.16.

It is first necessary to create
by-hand the first row of
crystals. This is
accomplished by first creating a module just big enough to contain one row of wedge crystals.

/gate/rsector/daughters/name module
/gate/rsector/daughters/insert box
/gate/module/geometry/setXLength 10 mm
/gate/module/geometry/setYLength 17.765 mm
/gate/module/geometry/setZLength 2.162 mm
/gate/module/setMaterial Air

Figure 3.14: Illustration of the rotation placement

Figure 3.16: A block approximating a true circular
geometry

Figure 3.17: The OPET scanner

Then, a box that will contain the first wedge crystal is
located inside the module:

/gate/module/daughters/name crystal0
/gate/module/daughters/insert box
/gate/crystal0/geometry/setXLength 10 mm
/gate/crystal0/geometry/setYLength 2.1620 mm
/gate/crystal0/geometry/setZLength 2.1620 mm
/gate/crystal0/placement/setTranslation 0. -7.8015 0. mm
/gate/crystal0/setMaterial Air
/gate/crystal0/vis/setColor black
/gate/crystal0/vis/setVisible false

Finally, the actual crystal is placed inside its box:

/gate/crystal0/daughters/name LSO0
/gate/crystal0/daughters/insert wedge
/gate/LSO0/geometry/setXLength 10 mm
/gate/LSO0/geometry/setNarrowerXLength 8.921 mm
/gate/LSO0/geometry/setYLength 2.1620 mm
/gate/LSO0/geometry/setZLength 2.1620 mm
/gate/LSO0/placement/setRotationAxis 0 1 0
/gate/LSO0/placement/setRotationAngle 180 deg
/gate/LSO0/placement/setTranslation 0.2698 0. 0. mm
/gate/LSO0/setMaterial BGO

It is necessary to locate each crystal in separate "layers".

The last two steps are repeated for each crystal inside the module. Then the module is repeated along the Z
axis and the block is repeated 6 times around the center of the scanner.

Figure 4.9 shows the final OPET scanner.

Moving a volume
The GEANT geometry architecture requires the geometry to be static during a simulation. However, the
typical duration of a single event (e.g. ps for the particle transport, µs for scintillation, or ms for the response
of the electronics) is very short when compared to most of the geometrical changes to be modeled (e.g.
movements of the phantom or of the detector or bio-kinetics). Therefore, the elements of the geometry are
considered to be at rest during each time-step. Between every time-step, the position and the orientation of a
subset of daughter volumes can be changed to mimic a movement such as a rotation or a translation. These
displacements are parametrized by their velocity. Hence, the amplitude of the volume displacement is
deduced from the duration of the time-step multiplied by the velocity of the displacement.

Given the speed of the components of the geometry, it is the responsibility of the user to set the time step
duration short enough in order to produce smooth changes.

A volume can be moved during a simulation using five types of motion: rotation, translation, orbiting,
wobbling and eccentric rotation, as explained below.

Translation

To translate a Name_Volume volume during the simulation, the commands are:

/gate/Name_Volume/moves/insert translation
/gate/Name_Volume/translation/setSpeed x 0 0 cm/s

where x is the speed of translation and the translation is performed along the X axis. These commands can
be useful to simulate table motion during a scan for instance.

Example

/gate/Table/moves/insert translation
/gate/Table/translation/setSpeed 0 0 1 cm/s

The Table volume is translated along the Z axis with a speed of 1 cm per second.

Rotation

To rotate a Name_Volume volume around an axis during the simulation, with a speed of N degrees per
second, the commands are:

/gate/Name_Volume/moves/insert rotation
/gate/Name_Volume/rotation/setSpeed N deg/s
/gate/Name_Volume/rotation/setAxis 0 y 0

Example

/gate/Phantom/moves/insert rotation
/gate/Phantom/rotation/setSpeed 1 deg/s
/gate/Phantom/rotation/setAxis 0 1 0

The Phantom volume rotates around the Y axis with a speed of 1 degree per second.

Orbiting

Rotating a volume around any axis during a simulation is possible using the orbiting motion. This motion is
needed to model the camera head rotation in SPECT. To rotate the Name_Volume volume around the X axis
with a speed of N degrees per second, the commands are:

/gate/SPECThead/moves/insert orbiting
/gate/SPECThead/orbiting/setSpeed N. deg/s
/gate/SPECThead/orbiting/setPoint1 0 0 0 cm
/gate/SPECThead/orbiting/setPoint2 1 0 0 cm

The last two commands define the rotation axis.

It is possible to enable or disable the volume auto-rotation option using:

/gate/Name_Volume/orbiting/enableAutoRotation
/gate/Name_Volume/orbiting/disableAutoRotation

Example

/gate/camera_head/moves/insert orbiting
/gate/camera_head/orbiting/setSpeed 1. deg/s
/gate/camera_head/orbiting/setPoint1 0 0 0 cm
/gate/camera_head/orbiting/setPoint2 0 0 1 cm

The camera_head volume is rotated around the Z axis during the simulation with a speed of 1 degree per
second.

Wobbling

The wobbling motion enables an oscillating translation movement to the volume.

This motion is needed to mimic the behavior of certain PET scanners that wobble to increase the spatial
sampling of the data during the acquisition.

The movement that is modeled is defined by dM(t) = A.sin(2.PI.f.t + phi) where dM(t) is the translation
vector at time t, A is the maximum displacement vector, f is the movement frequency, phi is the phase at t=0,
and t is the time.

To set the parameters of that equation, use:

/gate/Name_Volume/moves/insert osc-trans

To set the amplitude vector of the oscillating translation:

/gate/Name_Volume/osc-trans/setAmplitude x. 0. 0. cm

To set the frequency of the oscillating translation:

/gate/Name_Volume/osc-trans/setFrequency N Hz

To set the period of the oscillating translation:

/gate/Name_Volume/osc-trans/setPeriod N s

To set the phase at t=0 of the oscillating translation:

/gate/Name_Volume/osc-trans/setPhase N deg

Example

/gate/crystal/moves/insert osc-trans
/gate/crystal/osc-trans/setAmplitude 10. 0. 0. cm
/gate/crystal/osc-trans/setFrequency 50 Hz
/gate/crystal/osc-trans/setPeriod 1 s
/gate/crystal/osc-trans/setPhase 90 deg

In this example, the movement that is modeled is defined by dM(t) = 10.sin(100.PI.t + 90)

Eccentric rotation

The eccentric rotation motion enables an eccentric rotation movement of the volume. It is a particular case
of the orbiting movement. To set the object in eccentric position (X-Y-Z) and rotate it around the OZ lab
frame axis, use:

/gate/Name_Volume/moves/insert eccent-rot

To set the shifts in the X-Y-Z directions:

/gate/Name_Volume/eccent-rot/setShiftXYZ x y z cm

To set the orbiting angular speed:

/gate/Name_Volume/eccent-rot/setSpeed N deg/s

Remark : This particular move is closely related to the LMF definition since the move parameters (shifts in
all 3 directions and angular speed) are propagated in the .cch header.

Example

/gate/crystal/moves/insert eccent-rot
/gate/crystal/eccent-rot/setShiftXYZ 5. 0. 0. cm
/gate/crystal/eccent-rot/setSpeed 10 deg/s

The crystal volume is placed at 10 cm, 0 cm and 0 cm from the center of its mother volume and will rotate
around the Z axis during the simulation with a speed of 10 degrees per second.

Generic move

A volume can be move at given time value thanks to the following macros:

/gate/myvolume/moves/insert genericMove
/gate/myvolume/genericMove/setPlacementsFilename data/myvolume.placements

In the same idea than GenericRepeater,the placements file contains the transformations (rotation, translation)
and the time value where this transformations is applied.

List of placement (translation and rotation) according to time
Column 1 is Time in s (second)
Column 2 is rotationAngle in degree
Columns 3,4,5 are rotation axis
Columns 6,7,8 are translation in mm
Time s
Rotation deg
Translation mm
0 0 0 1 0 0 0 100
250.7 3 0 1 0 0 10 100
492.9 4 0 1 0 0 20 100
742.9 8 0 1 0 30 0 100

WARNING. The time values given here do not necessarily correspond to simulation's run. The real runs are
defined with the time slices (see this section for example). At each new run, GATE looks into the time-
placements list and chooses the one that corresponds to the starting time of the run. It leads that some
placements can be not applied (if one run start before the placement time and the next run start after the next
placement time). If run time is after the last placements time in the list, the last placements is applied.

See example here

Generic repeater move

You can combine generic repeater and generic move to allow different repeated configurations according to
time. This is for example useful to describe multi-leaf collimator from a single leaf which is repeated at
different positions, and which move according to each beam.

/gate/myvolume/moves/insert genericRepeaterMove
/gate/myvolume/genericRepeaterMove/setPlacementsFilename data/myvolume.placements
/gate/myvolume/genericRepeaterMove/useRelativeTranslation 1

List of placement (translation and rotation)
Column 1 is rotationAngle in degree
Columns 2,3,4 are rotation axis
Columns 5,6,7 are translation in mm
Time s

NumberOfPlacements 3
Rotation deg
Translation mm
#Time # Placement 1 # Placement 2 # Placement 3
0 10 0 1 0 20 0 0 10 0 1 0 80 0 0 10 0 1 0 -60 0 0
1 20 0 1 0 20 10 0 20 0 1 0 80 10 0 20 0 1 0 -60 10 0
2 30 1 1 0 20 0 0 30 1 1 0 80 0 0 30 1 1 0 -60 0 0
4 40 0 1 1 20 0 40 40 0 1 1 80 0 40 40 0 1 1 -60 0 40

The 'NumberOfPlacements' is needed to indicate how many different repetition are performed at each
motion.

Updating the geometry
Updating the geometry is needed to take into account any change in the geometry. It also refreshes the
display window. The geometry can be updated with the following command.

/gate/geometry/update

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Defining_a_geometry"

This page was last modified on 8 February 2016, at 12:23.

Users Guide V7.2:Materials
From GATE collaborative documentation wiki

Table of Contents
The Gate material database
Modifying the Gate material database
Ionization potential

The Gate material database
The primary method for defining the properties of the materials used in Gate is by a materials database. This
file holds all the information required for Gate to assign the nuclear properties from the Geant4 data sets,
and is easily modified by the user. The OpenGate collaboration supplies a fairly extensive listing of
materials in this file as part of Gate. This chapter describes the details of how to modify this database.

As alluded to in the previous paragraph, there exists an alternate method for materials definitions. As
discussed in previous chapters, Gate scripts are developed from Geant4 C++ data classes in order to simplify
and standardize input for Geant4. As a result, materials definitions can be written and compiled in C++
directly using the Geant4 tools. Specifying materials in this manner is beyond the scope of this document.
For those interested in direct access to Geant4's materials should refer to the Geant4 User's Guide: For
Application Developers and the Geant4 User's Guide: For Toolkit Developers for more detailed information.

The material database contains two Geant4 structures called elements and materials that are used to define
the physical properties of the atoms, molecules, and compounds. In contrast with Geant4, Gate does not use
isotopic abundances. This omission has little bearing on Gate applications because isotopic abundances are
unimportant in low to mid energy photon and charged particle interactions. In fact, this distinction is only
important for enriched or depleted materials interacting with neutrons or, high energy (>5 MeV) photons or
charged particles.

It is possible to use several material database. If a material is defined in several database, Gate keeps the
material in last database called (with a warning message). To call a database:

/gate/geometry/setMaterialDatabase MyMaterialDatabase.db

Elements

Elements are the building blocks of all the materials used in Gate simulations. Elements in Gate are defined
as in a periodic table. Gate stores the elements name, symbol, atomic number, and molar mass. As stated
above, isotopic abundances are not referenced or used. The supplied file GateMaterials.db contains the most
commonly used elements and their molar masses as they are found in nature.

Some elements, particularly those that have an isotope with a large cross section for neutron absorption,
have isotopic abundances and thus molar masses that vary depending upon their source. One element that
exhibits this behavior is boron. In practice this behavior is not important for Gate applications.

Materials

In Gate, materials are defined as combinations of elements, and are an important parameter that Gate uses
for all of the particle interactions that take place during a simulation. These combinations of elements
require defining four additional parameters. These are the material's name, density, constituent element(s),
and their individual abundances.

The composition of elements within a material can be defined in two different ways. If the material is a
chemical compound then its relative amounts of elements are specified by the number of atoms in the
chemical formula of the compound. For example, methane CH4 would be defined as having one carbon atom
and four hydrogen atoms. If the material is better described as a mixture, such as 304-stainless steel, then the
relative combinations of the elements are given by mass fraction. In the case of 304-stainless steel, the
various mass fractions are given as 0.695 Iron, 0.190 Chromium, 0.095 Nickel, and 0.020 Manganese. Note
that the mass fractions from the elements must all sum to one.

Densities of materials often vary greatly between different sources and must be carefully selected for the
specific application in mind. Units of density must also be defined. These are typically given in g/cm3 but
can be given in more convenient units for extreme cases. For example, a vacuum's density may be expressed
in units of mg/cm3.

Modifying the Gate material database

New element

Defining a new element is a simple and straightforward process. Simply open the GateMaterials.db file with
the text editor of your choice. At the top of the file is the header named [Elements] and somewhere in the
middle of the file is another header named [Materials]. All element definitions required by the application
must be included between these two headers. The format for entering an element is given by the elements
name, symbol, atomic number, and molar mass. Below is an example:

Element Example GateMaterials.db:

[Elements]
Hydrogen: S= H ; Z= 1. ; A= 1.01 g/mole
Helium: S= He ; Z= 2. ; A= 4.003 g/mole
Lithium: S= Li ; Z= 3. ; A= 6.941 g/mole
Beryllium: S= Be ; Z= 4. ; A= 9.012 g/mole
Boron: S= B ; Z= 5. ; A= 10.811 g/mole
Carbon: S= C ; Z= 6. ; A= 12.01 g/mole

In this example the name of the element is given first and is followed by a colon. Next, the standard symbol
for the element is given by S=symbolic name followed by a semi-colon. The atomic number and molar mass
follow the symbolic name given by Z=atomic number with a semi-colon and by A=molar mass units for the
molar mass and its units.

New material

Materials are defined in a similar manner to elements but contain some additional parameters to account for
their density and composition. Defining density is straightforward and performed the same way for all
materials. However, material compositions require different definitions depending upon their form. These
compositional forms are pure substances, chemical compounds, and mixtures of elements.

To add or modify a material in the material database, the GateMaterials.db file should be open using a text
editor. The new entry should be inserted below the header named Materials. All material definitions required
by the application must be included below this second header. Material definitions require several lines. The
first line specifies their name, density, number of components, and an optional parameter describing the
materials state (solid, liquid, or gas). The second and following lines specify the individual components and
their relative abundances that make up this material.

The compositional forms of materials that Gate uses are pure substances, chemical compounds, mixtures of
elements, and mixtures of materials. Gate defines each of these cases slightly differently and each will be
dealt with separately below. In every case, the elements being used in a material definition must be
previously defined as elements.

Elements as materials

Substances made of a pure element are the easiest materials to define. On the first line, enter the name of the
material (the name of the material can be the same as that of the element), its density, its number of
constituents (which is one in this case), and optionally its state (solid, liquid, or gas). The default state is
gaseous. On the second line enter the element that it is composed of and the number of atoms of that element
(in the case of an element as a material this number is 1). For example:

Elements as materials example GateMaterials.db:

[Materials]
Vacuum: d=0.000001 mg/cm3 ; n=1
 +el: name=Hydrogen ; n=1
Aluminium: d=1.350 g/cm3 ; n=1 ; state=solid
 +el: name=auto ; n=1
Uranium: d=18.90 g/cm3 ; n=1 ; state=solid
 +el: name=auto ; n=1

On the first line the density (with units) is defined by d=material density units and is separated by a semi-
colon from the number of constituents in the material defined by n=number of elements. If the optional
material form parameter is used it is also separated by a semi-colon. The available forms are gas, liquid, and
solid. On the second line the individual elements and their abundances are defined by +el: name=name of
the element ; n=number of atoms. If the name of the element and the material are the same, the element
name can be defined by +el: name=auto command.

Compounds as materials

Chemical compounds are defined based upon the elements they are made of and their chemical formula. The
first line is identical to the first line of a pure substance except that the number of constituent elements is
now greater than one. On the second and subsequent lines, the individual elements and their abundances are
defined by +el: name=name of the element;n=number of atoms.

For example:

Compounds as materials example GateMaterials.db:

[Materials]
NaI: d=3.67 g/cm3; n=2; state=solid
 +el: name=Sodium ; n=1
 +el: name=Iodine ; n=1

PWO: d=8.28 g/cm3; n=3 ; state=Solid
 +el: name=Lead; n=1

 +el: name=Tungsten; n=1
 +el: name=Oxygen; n=4

Mixtures as materials

Mixture of elements are defined by indicating the mass fraction of the elements that make up the mixture.
The first line of this definition is identical to the first line of the definition of a chemical compound. On the
second and subsequent lines, the individual elements and their mass fractions are defined by +el:
name=name of element;f=mass fraction.

In the case of material mixtures, the sum of the mass fractions should be one. For example:

Mixtures as materials example GateMaterials.db:

[Materials]
Lung: d=0.26 g/cm3 ; n=9
 +el: name=Hydrogen ; f=0.103
 +el: name=Carbon ; f=0.105
 +el: name=Nitrogen ; f=0.031
 +el: name=Oxygen ; f=0.749
 +el: name=Sodium ; f=0.002
 +el: name=Phosphor ; f=0.002
 +el: name=Sulfur ; f=0.003
 +el: name=Chlorine ; f=0.003
 +el: name=Potassium ; f=0.002

SS304: d=7.92 g/cm3 ; n=4 ; state=solid
 +el: name=Iron ; f=0.695
 +el: name=Chromium ; f=0.190
 +el: name=Nickel ; f=0.095
 +el: name=Manganese ; f=0.020

Mixtures of materials as materials

Another way material can be defined is as mixtures of other materials and elements. As an example:

Mixtures of mixtures as materials example GateMaterials.db:

[Materials]
Aerogel: d=0.200 g/cm3 ; n=3
 +mat: name=SiO2 ; f=0.625
 +mat: name=Water ; f=0.374
 +el: name=Carbon ; f=0.001

In this example, the material, Aerogel, is defined to be made up of two materials, silicon dioxide and water,
and one element, carbon. Mass fractions of the silicon dioxide, water, and carbon are given to specify the
atom densities of the material when related to the density of the Aerogel. When specifying materials rather
than elements the +mat: name=identifier must be used.

Ionization potential
The ionization potential is the energy required to remove an electron to an atom or a molecule. By default,
the ionization potential is calculated thanks to the Bragg’s additivity rule. It is possible to define the
ionization potential of each material defined in gate. For example:

/gate/geometry/setIonisationPotential Water 75 eV

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Materials"

This page was last modified on 8 February 2016, at 12:12.

Users Guide V7.2:Setting up the physics
From GATE collaborative documentation wiki

Table of Contents
New physics list mechanism
Physics list selection

Particles
Adding a process
Removing a process
Models and Data sets

Physics processes
Electromagnetic processes

Photoelectric effect
Compton scattering
Rayleigh scattering
Pair production
Ionization
Bremsstrahlung
Positron and electron annihilation
Single and multiple Scattering
Muon electromagnetic processes

Hadronic processes
Main Geant4 models
Elastic scattering
Inelastic process for proton
Inelastic process for ion
Pions
Neutrons
Particle decay

Optical physics processes
Bulk Absorption
Rayleigh Scattering
Mie Scattering
Processes at Boundaries
Wavelength Shifting or Fluorescence

Magnetic field

New physics list mechanism
WARNING : big change from Gate V7.0

Up to now, physic lists were set in GATE according to macro files containing list of command to add
physical processes. From GATE Version 7.0, we highly recommend to switch to the "physic list builder"
mechanism. The physic-list builders are provided by the Geant4 community. To use a builder, use the
"addPhyslicsList" command as follow :

/gate/physics/addPhysicsList QGSP_BERT_EMV

The name of the builder is one of the following for the electromagnetic physic-lists:

emstandard
emstandard_opt1
emstandard_opt2
emstandard_opt3
emlivermore
emlivermore_polar
empenelope

And for the hadronic physics list builders :

QGSP
QGSP_EMV
QGSC
QGSC_EMV
QGSP_EFLOW
QGSP_BERT
QGSP_BERT_EMV
QGSP_BERT_HP
QGSP_BERT_TRV
QGSP_BIC
QGSP_BIC_HP
QGSP_NEQ
QGSP_EMV_NQE
QGSP_BERT_NQE
QGSP_INCLXX
FTFP_BERT
FTFP
FTFP_EMV
...

See more details on electromagnetic
(http://geant4.web.cern.ch/geant4/collaboration/working_groups/electromagnetic/physlist9.5.shtml) and
hadronic (http://geant4.web.cern.ch/geant4/support/proc_mod_catalog/physics_lists/referencePL.shtml)
builders. Another guide can be found here (http://geant4.in2p3.fr/IMG/pdf_PhysicsLists.pdf) .

The production cuts special cuts can still be used as exemplified below :

/gate/physics/Gamma/SetCutInRegion world 10 mm
/gate/physics/Electron/SetCutInRegion world 10 mm
/gate/physics/Positron/SetCutInRegion world 10 mm
/gate/physics/Proton/SetCutInRegion world 10 mm

/gate/physics/Gamma/SetCutInRegion patient 1 mm
/gate/physics/Electron/SetCutInRegion patient 1 mm
/gate/physics/Positron/SetCutInRegion patient 1 mm
/gate/physics/Proton/SetCutInRegion patient 1 mm

/gate/physics/SetMaxStepSizeInRegion patient 1 mm
/gate/physics/ActivateStepLimiter proton

Physics list selection
Processes have three possible states: "Available", "Enabled" and "Initialized". In a simulation, GATE uses
initialized processes. By default, all processes are only "Available". To initialize processes you want to use,
you have to choose them in the list of available processes and put them in the list of "Enabled" processes
with the addProcess/removeProcess commands. Then, you have to define models, data sets or energy range
if it is necessary. Enabled processes are initialized when the command /gate/run/initialize is called. After
initialization, physics list cannot be modified. Processes must be initialized before the source definition.

To obtain the list of processes available, enabled or initialized:

/gate/physics/processList [State] [Particle]

Parameter : State
Parameter type : s
Omittable : True
Default value : Available
Candidates : Available Enabled Initialized

Parameter : Particle
Parameter type : s
Omittable : True
Default value : All

User can print the list of initialized processes for each particles and the list of enabled processes with all
informations (particles, models, data sets and energy range):

/gate/physics/print [File name]

Parameter : File Name
Parameter type : s
Omittable : False

Particles

To designate a particle in a macro command for physics, you have to use the Geant4 name of the particle.
The command /particle/list gives the list of particles available in GATE. Note that there are 5 particles
defined for nuclei: "deuteron", "triton", "alpha", "He3" and a generic particle for all ions called
"GenericIon". For more information about particles in Geant4, see Geant4 user support[1].

User can also use a particle group name. For example, "Charged" designates all charged particles or “EM”
designates gamma, e+ and e-. Here, the list of particle groups available in GATE:

Default : defaults particles defined for a process (see the "processList" command before for more
informations)
EM : e+, e-, gamma
Charged : all charged particles

< ! > Particle name in non-physics macro command could be slightly different in particular for ions!

Adding a process

To add a process to the list of "Enabled" processes for a particle or a group of particles:

/gate/physics/addProcess [Process] [Particle]

Parameter : Process
Parameter type : s
Omittable : False

Parameter : Particle
Parameter type : s
Omittable : True
Default value : Default

Removing a process

To remove a process of the "Enabled" processes list:

/gate/physics/removeProcess [Process] [Particle]

Parameter : Process
Parameter type : s
Omittable : False

Parameter : Particle
Parameter type : s
Omittable : True
Default value : Default

Models and Data sets

Some processes have several models or several data sets available. To known if you can choose a model or a
data set for a process, use the commands:

/gate/physics/processes/[Process Name]/modelList [Particle]
/gate/physics/processes/[Process Name]/dataSetList [Particle]

Parameter : Particle
Parameter type : s
Omittable : True
Default value : Default

To select or unselect a model or a data set, use the command:

/gate/physics/processes/[Process Name]/setModel [Model Name] [Particle]
/gate/physics/processes/[Process Name]/unSetModel [Model Name] [Particle]
/gate/physics/processes/[Process Name]/setDataSet [DataSet Name] [Particle]
/gate/physics/processes/[Process Name]/unSetDataSet [DataSet Name] [Particle]

Parameter : Model/DataSet Name
Parameter type : s
Omittable : False
Candidates :

Parameter : Particle
Parameter type : s
Omittable : True
Default value : Default

Models can be selected for an energy range or for specific materials or elements. To do this, use commands:

/gate/physics/processes/[Process Name]/[Model Name]/setEmax [Value] [Unit] [Particle] [Option]
/gate/physics/processes/[Process Name]/[Model Name]/setEmin [Value] [Unit] [Particle] [Option]

Parameter : Value
Parameter type : d
Omittable : False
Default value : 0.0

Parameter : Unit
Parameter type : s
Omittable : False
Default value : MeV
Candidates : eV keV MeV GeV

Parameter : Particle
Parameter type : s
Omittable : True
Default value : Default

Parameter : Option
Parameter type : s
Omittable : True
Default value : NoOption

The parameter "Option" allow to define material or element for this model (see chapter on detector
construction for more informations on materials and elements). For example:

/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmin 100 keV
/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmin 200 keV GenericIon Water

A command allows to clear energy ranges defined for a model:

/gate/physics/[Process Name]/[Model Name]/clearEnergyRange [Particle]

Parameter : Particle
Parameter type : s
Omittable : True
Default value : All

Physics processes

Electromagnetic processes

Electromagnetic processes are used to simulate the electromagnetic interaction of particles with matter. The
mean free path of a process, λ, also called the interaction length, can be given in terms of the total cross
section:

where σ(Zi,E) is the cross section of the process for atom i composing the material. Cross-sections per atom
and mean free path values are tabulated during initialization.

In Geant4, three models are available for electromagnetic processes:

Standard processes are effective between 1 keV and 100 TeV
Low energy processes are effective between 250 eV and 100 GeV (there is also the
LivermorePolarizedModel for polarized gamma)
Penelope processes are effective between 250 eV and 1 GeV

Models and cross-sections are based on the theoretical calculations and on exploitation of evaluated data.
For the standard processes based on data, models and cross-sections rely on parameterizations of these data.
Because atomic shell structure is more important in most cases at low energies, the low energy processes
make direct use shell cross section data. The data used for the determination of cross-sections and for
sampling of the final state are extracted from a set of freely distributed evaluated data libraries:

EPDL97 (Evaluated Photons Data Library)
EEDL (Evaluated Electrons Data Library)
EADL (Evaluated Atomic Data Library)
stopping power data
binding energy values based on data of Scofield .

The Penelope models have been specifically developed for Monte Carlo simulation and great care was given
to the low energy description (i.e. atomic effects, etc.). These processes are the Geant4 implementation of
the physics models developed for the PENELOPE code (PENetration and Energy LOss of Positrons and
Electrons), version 2001.

< ! > For the low energy processes, the download of G4EMLOW data files is required.

< ! > Positron have no low energy process.

< ! > Since Geant4 9.3, users can mixed electromagnetic models.

Photoelectric effect

The photoelectric effect is the absorption of a photon by an atomic electon with the ejection of this electron
from the atom. The energy of the outgoing electron is:

E = hν − L

where L is the binding energy of the electron. Since a free electron cannot absorb a photon and also conserve
momentum, the photoelectric effect always occurs on bound electrons while the nucleus absorbs the recoil
momentum. The cross-section calculation is complex due to the combinaison of the electron Dirac wave
functions. It is simulated by using a parameterized photon absorption cross section to determine the mean
free path, atomic shell data to determine the energy of the ejected electron, and the K-shell angular
distribution to sample the direction of the electron.

The cross-section depends on the atomic number Z of the material. The photoelectric process is favored by
high Z materials. In the current implementation the relaxation of the atom is not simulated, but instead is
counted as a local energy deposit. For low energy process, the deexcitation of the atom is simulated.

To add photoelectric effect in GATE:

/gate/physics/addProcess PhotoElectric gamma

Note that the two following macro are equivalent because the default particle for the photoelectric process is
the gamma only:

/gate/physics/addProcess PhotoElectric
/gate/physics/addProcess PhotoElectric Default
/gate/physics/addProcess PhotoElectric gamma

Then, choose the model:

/gate/physics/processes/PhotoElectric/setModel StandardModel

or

/gate/physics/processes/PhotoElectric/setModel LivermoreModel

or

/gate/physics/processes/PhotoElectric/setModel LivermorePolarizedModel

or

/gate/physics/processes/PhotoElectric/setModel PenelopeModel

Compton scattering

Compton process describes the photon scattering by free electrons. Although electrons are bound in matter,
the electron can be considered as essentially free for photons of energy much greater than the binding energy
of the electron.

In the simulation, an empirical cross section formula is used, which reproduces the cross section data down
to 10 keV. The final state is generated following the Klein-Nishina formula. For low energy incident
photons, the simulation of the Compton scattering process is performed according to the same procedure
used for the standard Compton scattering simulation, with the addition that Hubbel’s atomic form factor (or
scattering function) is taken into account. The angular and energy distribution of the incoherently scattered
photon is then given by the product of the Klein-Nishina formula and the scattering function.

To add Compton scattering in GATE:

/gate/physics/addProcess Compton gamma

Note that the two following macro are equivalent because the defaut particle for the Compton process is only
the gamma:

/gate/physics/addProcess Compton

/gate/physics/addProcess Compton Default
/gate/physics/addProcess Compton gamma

Then, choose the model :

/gate/physics/processes/Compton/setModel StandardModel

or

/gate/physics/processes/Compton/setModel LivermoreModel

or

/gate/physics/processes/Compton/setModel LivermorePolarizedModel

or

/gate/physics/processes/Compton/setModel PenelopeModel

Rayleigh scattering

Thomson and Rayleigh scattering are linked to Compton scattering. Thomson scattering is similer to
Compton scattering in the classical limit i.e. the scattering of photons by free electrons. For Rayleigh
scattering, all the electrons of the atom contribute in a coherent way (this process is also called coherent
scattering).

For these processes, no energy is transferred to the target. The direction of the photon is the only modified
parameter. Atoms are not excited or ionized. At high energies, the cross-sections of Thomson and Rayleigh
scattering are very small and are neglected. For these reasons, the Rayleigh process is defined only for low
energy and Penelope models:

/gate/physics/addProcess RayleighScattering gamma
/gate/physics/processes/RayleighScattering/setModel LivermoreModel
/gate/physics/processes/RayleighScattering/setModel LivermorePolarizedModel
/gate/physics/processes/RayleighScattering/setModel PenelopeModel

Pair production

The process of pair production describes the transformation of a photon into an electron-positron pair. In
order to conserve momentum, this can only occur in the presence of a third body, usually a nucleus.
Moreover, the minimum energy required to create a pair is equal to the sum of the electron mass and
positron mass (1.022 MeV).

To add pair production process in GATE:

/gate/physics/addProcess GammaConversion

Then, choose the model :

/gate/physics/processes/GammaConversion/setModel StandardModel

or

/gate/physics/processes/GammaConversion/setModel LivermoreModel

or

/gate/physics/processes/GammaConversion/setModel LivermorePolarizedModel

or

/gate/physics/processes/GammaConversion/setModel PenelopeModel

Ionization

A charged particle passing through matter loses energy due to inelastic collision with atomic electrons of the
material. Lost energy is transferred to the atom causing ionization or excitation . The ionization energy loss
is calculated using the Bethe-Bloch formula. The particle energy loss E is divided into continuous energy
loss and production of secondary electrons. The production threshold is defined as the minimum energy Ecut
above which secondary particles will be produced and tracked. When E < Ecut, E is included into the
continuous energy loss and when E > Ecut, secondary electrons are produced. Energy loss due to excitation
is included into continuous energy loss.

The mean excitation potential I is the main parameter of the Bethe-Bloch formula. This quantity can be
defined by user for each material (see chapter about geometry and materials).

There are three processes to handle ionization:

for electron and positron

/gate/physics/addProcess ElectronIonisation e+
/gate/physics/addProcess ElectronIonisation e-

for hadrons and ions

/gate/physics/addProcess HadronIonisation [Particle Name]

for ions

/gate/physics/addProcess IonIonisation [Particle Name]

The electron ionization process has three models available:

/gate/physics/processes/ElectronIonisation/setModel StandardModel e+
/gate/physics/processes/ElectronIonisation/setModel StandardModel e-
/gate/physics/processes/ElectronIonisation/setModel LivermoreModel e-
/gate/physics/processes/ElectronIonisation/setModel PenelopeModel e+
/gate/physics/processes/ElectronIonisation/setModel PenelopeModel e-

The new Geant4 model selection has not yet implemented for hadron ionization process in GATE V6.2. So
users have to the old process/model selection.

The low energy model have a specific process for ionization of hadrons, ions, muons and taus:

/gate/physics/addProcess LowEnergyHadronIonisation

For the energy range between 1 keV and 2 MeV, this process has several models for the parametrization of
electronic and nuclear stopping power:

/gate/physics/processes/LowEnergyHadronIonisation/setModel Elec_Ziegler1977p proton

Electronic stopping power models:

Elec_ICRU_R49p (default)
Elec_ICRU_R49He
Elec_Ziegler1977p
Elec_Ziegler1977He
Elec_Ziegler1985p
Elec_SRIM2000p

Nuclear stopping power models:

Nuclear_ICRU_R49 (default)
Nuclear_Ziegler1977
Nuclear_Ziegler1985

It is possible to enable/disable nuclear stopping power for all hadrons and ions ionization processes:

/gate/physics/processes/[Process name]/setNuclearStoppingOn
/gate/physics/processes/[Process name]/setNuclearStoppingOff

Example:

/gate/physics/processes/HadronIonisation/setNuclearStoppingOff

Bremsstrahlung

Bremsstrahlung process is the production of an electromagnetic radiation by a charged particle accelerated
in the field of another charged particle, such as a nucleus. The cross-section of bremsstrahlung is inversely

proportional to the mass squared. Thus this process is more important for electron and positron than other
charge particles. As for ionization process, above a given threshold energy the energy loss is simulated by
the explicit production of photons. Below the threshold, emission of soft photons is treated as a continuous
energy loss. The bremsstrahlung energy spectrum is continuous.

/gate/physics/addProcess Bremsstrahlung e+
/gate/physics/addProcess Bremsstrahlung e-

The electron ionization process has three models available:

/gate/physics/processes/Bremsstrahlung/setModel StandardModel e+
/gate/physics/processes/Bremsstrahlung/setModel StandardModel e-
/gate/physics/processes/Bremsstrahlung/setModel LivermoreModel e-
/gate/physics/processes/Bremsstrahlung/setModel PenelopeModel e+
/gate/physics/processes/Bremsstrahlung/setModel PenelopeModel e-

Positron and electron annihilation

In Geant4, the process which simulated the in-flight annihilation of a positron with an atomic electron is
attached to positron. As is usually done in shower programs, it is assumed here that the atomic electron is
initially free and at rest. Also, annihilation processes producing one, or three or more, photons are ignored
because these processes are negligible compared to the annihilation into two photons.

/gate/physics/addProcess G4PositronAnnihilation e+

Then, choose the model :

/gate/physics/processes/G4PositronAnnihilation/setModel StandardModel

or

/gate/physics/processes/G4PositronAnnihilation/setModel PenelopeModel

An improvement of the positron-electron annihilation has been developed to take into account the γγ non-
colinearity . The mean value of the angle distribution is (do not need model selection).

/gate/physics/addProcess PositronAnnihilation e+

Single and multiple Scattering

In addition to inelastic collisions with atomic electrons, charged particles passing through matter also suffer
repeated elastic Coulomb scatterings from nuclei. Elastic cross section is huge when particle energy
decreases, so multiple scattering approach (MSC) should be introduced in order to have acceptable CPU
performance of the simulation. The MSC model used in GEANT4 belongs to the class of condensed
algorithm in which the global effects of the collisions are simulated at the end of a track segment (step). The

global effects generally computed in these codes are the net displacement, energy loss, and change of
direction of the charged particle. The model is based on Lewis' MSC theory and uses model functions to
determine the angular and spatial distributions after a step. The functions have been chosen in such a way as
to give the same moments of the (angular and spatial) distributions as the Lewis theory. Two processes are
available for multiple scattering. These processes are similar but they allow to define some sets of options
for group of particles (electron/positron and hadron). The new Geant4 model selection has not yet
implemented for multiple scattering process in GATE V6.2. So users have to the old process/model
selection. The old MultipleScattering is now deprecated.

/gate/physics/addProcess eMultipleScattering e-
/gate/physics/addProcess eMultipleScattering e+

/gate/physics/addProcess hMultipleScattering proton
/gate/physics/addProcess hMultipleScattering alpha
/gate/physics/addProcess hMultipleScattering GenericIon
...

Single elastic scattering process is an alternative to the multiple scattering process. The advantage of the
single scattering process is in possibility of usage of theory based cross sections, in contrary to the Geant4
multiple scattering model, which uses a number of phenomenological approximations on top of Lewis
theory. Because each of elastic collisions are simulated the simulation CPU time of charged particles
significantly increasing in comparison with the multiple scattering approach.

/gate/physics/addProcess SingleScattering ...

Muon electromagnetic processes

Muons have their own electromagnetic processes:

Ionization

/gate/physics/addProcess MuIonisation mu+
/gate/physics/addProcess MuIonisation mu-

Bremsstrahlung

/gate/physics/addProcess MuBremsstrahlung mu+
/gate/physics/addProcess MuBremsstrahlung mu-

Direct production of (e+, e-) pairs by mu+ and mu-

/gate/physics/addProcess MuPairProduction mu+
/gate/physics/addProcess MuPairProduction mu-

For ionization, the low energy model can handle muons.

Electromagnetic options

< ! > This part is recommanded for advanced users only!

< ! > Valid only from Geant4 version 9.2 - Gate V6.0 & V6.0.p01

< ! > In Geant4 version 9.2, options are available only for standard processes - Gate V6.0 & V6.0.p01

< ! > In case of using Gate V6.2, users must compile with Geant4 version 9.5 patch 01 - This Gate
release is NOT compatible with previous Geant4 version

Options are available for steering the standard electromagnetic processes. Some options modify all
electromagnetic processes initialized in the simulation (Global options). Some options have to be defined for
each processes.

Global options:

The following options manage the DEDX, mean free path and cross sections tables. User can defined the
table range (default 0.1 keV - 100 TeV):

/gate/physics/setEMin 0.1 keV
/gate/physics/setEMax 10 GeV

the number of bins of the DEDX table (default = 84):

/gate/physics/setDEDXBinning 500

and the number of bins of the mean free path table (default = 84):

/gate/physics/setLambdaBinning 500

Using cubic spline interpolation of DEDX and cross section tables, better interpolation was found to
increase stability when varying transport parameters, such as cuts, of energy deposition of hadrons. Cubic
spline interpolation is enabled by default. If the option was disable, the old linear interpolation is used:

/gate/physics/setSplineFlag true
/gate/physics/setSplineFlag false

Step function

Continuous energy loss imposes a limit on the step size because of the energy dependence of the cross
sections. It is generally assumed in MC programs that the particle cross sections are approximately constant
along a step, i.e. the step size should be small enough that the change in cross section, from the beginning of
the step to the end, is also small. In principle one must use very small steps in order to insure an accurate
simulation, however the computing time increases as the step size decreases. A good compromise is to limit
the step size by not allowing the stopping range of the particle to decrease by more than a value [Ratio]
during the step ([Ratio] = Δrange/range). This condition works well for particles with kinetic energies > 1
MeV, but for lower energies it gives very short step sizes.

To cure this problem a lower limit on the step size was introduced ([Final range]). The step size limit varies

smoothly with decreasing energy from the value [Ratio] to the lowest possible value range cut [Final
range]. By default for electron, [Ratio] = 0.2 and [Final range] = 0.1 mm.

/gate/physics/processes/[Process name]/SetStepFunction [Particle] [Ratio] [Final range] [Unit]

Parameter : [Particle]
Parameter type : s
Omittable : False

Parameter : [Ratio] (step/range)
Parameter type : d
Omittable : False

Parameter : [Final range]
Parameter type : d
Omittable : False

Parameter : [Unit]
Parameter type : s
Omittable : False

Example:

/gate/physics/processes/ElectronIonisation/setStepFunction e+ 0.01 1 mm

Linear loss limit

This cut is an other approach to limit the step size. In a step, the energy loss by a particle with a kinetic
energy E cannot exceed a value Ecut such as Ecut/E < [Ratio]. By default for the ionization of an electron,
the limit is 0.01.

/gate/physics/processes/IonIonisation/setLinearLossLimit [Particle] [Ratio]

Parameter : Particle or Group of particles
Parameter type : s
Omittable : False

Parameter : Limit
Parameter type : d
Omittable : False

Example:

/gate/physics/processes/HadronIonisation/setLinearLossLimit proton 0.0001

Geometrical step limit type

This option allow to choose the transport algorithm for the multiple scattering process near to boundary. The
two options proposed are safety and distanceToBoundary. For instance, the distanceToBoundary algorithm
limit the step size near to geometrical boundaries: only single scattering is applied very close to the
boundaries.

/gate/physics/processes/MultipleScattering/setGeometricalStepLimiterType [Particle] [Limit type]

Parameter : Particle or Group of particles

Parameter type : s
Omittable : False

Parameter : Limit type
Parameter type : s
Omittable : False

Example:

/gate/physics/processes/MultipleScattering/setGeometricalStepLimiterType proton distanceToBoundary

Hadronic processes

Hadronic processes described the interactions between incident hadrons/ions and the target nuclei. We also
include decays of hadron and nuclei in this part. There is no strict frontier between nucleon-nucleon collision
processes but we can distinguish four main process types in function of the energy and the impact parameter.
At low energies, collisions lead to incomplete fusion in central collisions and to elastic scattering or inelastic
scattering in peripherical collisions. At higher energies, there is fragmentation into several lighter fragments
or nucleons for central collisions and into participant and the spectator regions for peripherical collisions. In
Geant4, fusion, inelastic scattering and fragmentation processed are included in the inelastic process type.
Inelastic processes had three main steps:

cascade: the incident particle interacts strongly with the target and produces secondary particles
preequilibrium (thermalization process): the excited target nucleus switches into equilibrated state by
emitting excitons and light nuclei.
de-excitation: the equilibrated nuclear residues evaporates into nucleons/light nuclei or breaks up into
several fragments.

Each hadronic process may have one or more data sets associated with it. The term "data set" is meant, in a
broad sense, to be an object that encapsulates methods and data for calculating total cross sections for a
given process. The methods and data may take many forms, from a simple equation using a few hard-wired
numbers to a sophisticated parameterization using large data tables. For the evaluation of cross sections, the
list has a LIFO (Last In First Out) priority, meaning that data sets added later to the list will have priority
over those added earlier to the list.

The final state is produced using models coupled to processes. In Geant4, any model can be run together
with any other model and the ranges of applicability for the different models can be steered. This way,
highly specialized models (valid only for one material and particle, and applicable only in a very restricted
energy range) can be used in the same application, together with more general code, in a coherent fashion.
Each model has an intrinsic range of applicability, and the model chosen for a simulation depends very much
on the use-case. Three types of hadronic models have been implemented: parametrization driven models,
data driven models, and theory driven models.

Most of hadronic processes need an explicit choice of models while a lots of processes have a default data
set.

Main Geant4 models

LHEP

LHEP is the model used by default. It is based on code GHEISHA developed since 1978 by H. Fesefeldt to
simulate hadron-nucleus interactions. The low energy part is valid from few hundred MeV to 20 GeV. The

model is based on the principle of the intranuclear cascade and only the first hadron-nucleus interaction is
simulated in detail. Other interactions in the nucleus are simulated by generating additional hadrons, simply
treated as secondary particles can themselves generate their own intranuclear cascade. LHEP is a fully
parameterized model but the physical meaning of the large number of adjustable parameters is sometimes
unclear. Its main assets are the broad energy range covered, good reproduction of average values of
distributions and computation times.

Example: G4LCapture, G4LENeutronInelastic, G4LFission, G4LCapture, G4LEProtonInelastic,
G4LEPionMinusInelastic, G4LEPionPlusInelastic...

Bertini cascade

The intranuclear cascade model of Bertini has been developed by H W. Bertini in 1963. This code includes
the intranuclear cascade model of Bertini, a pre-equilibrium model, a simple model of nucleus explosion, a
model of fission and evaporation model.

Binary cascade

The Geant4 Binary Cascade is an intranuclear cascade propagating primary and secondary particles in a
nucleus. The energy range and type of projectile covered are the same as Bertini model. From a theoretical
point of view, this model is much more evolved taking into account a large number of resonances and fully
modeled in three dimensions. Interactions are between a primary or secondary particle and an individual
nucleon of the nucleus, leading to the name Binary Cascade. Cross section data are used to select collisions.
Where available, experimental cross sections are used by the simulation. Propagating of particles is the
nuclear field is done by numerically solving the equation of motion. The cascade terminates when the
average and maximum energy of secondaries is below threshold. The remaining fragments are treated by
precompound and de-excitation models.

QMD

Pre compound

Elastic scattering

In elastic scattering, the projectile and the target particles do not changed during the collision and no other
particles are produced. Two processes are available for hadrons and ions. The first one is the old elastic
process.

/gate/physics/addProcess HadronElastic Default
/gate/physics/processes/HadronElastic/setModel G4LElastic Default

or

/gate/physics/addProcess HadronElastic
/gate/physics/processes/HadronElastic/setModel G4LElastic

or

/gate/physics/addProcess HadronElastic proton

/gate/physics/processes/HadronElastic/setModel G4LElastic proton
/gate/physics/addProcess HadronElastic alpha
/gate/physics/processes/HadronElastic/setModel G4LElastic alpha
.........

This process has a default dataset (G4HadronElasticDataSet) and 6 models

G4LElastic
G4NeutronHPElastic
G4NeutronHPorLElastic
G4ElasticHadrNucleusHE
G4LEpp
G4LEnp

The alternative process is an improvement of the first process. It is supposed to be a good mix between the
models of the fist process:

/gate/physics/addProcess HadronElastic
/gate/physics/processes/HadronElastic/setModel G4HadronElastic
/gate/physics/processes/HadronElastic/setDataSet G4HadronElasticDataSet

For this process, there is only one model and a main dataset (G4HadronElasticDataSet). An other dataset for
low energy neutrons is also available (G4NeutronHPElasticData).

Inelastic process for proton

This process manage inelastic interaction of proton with matter. For example, the selection of two models
with energy range for proton inelastic process (the only default particle is the proton):

/gate/physics/addProcess ProtonInelastic
/gate/physics/processes/ProtonInelastic/setModel G4BinaryCascade
/gate/physics/processes/ProtonInelastic/G4BinaryCascade/setEmin 170 MeV
/gate/physics/processes/ProtonInelastic/G4BinaryCascade/setEmax 500 GeV
/gate/physics/processes/ProtonInelastic/setModel PreCompound
/gate/physics/processes/ProtonInelastic/PreCompound/setEmin 0 MeV
/gate/physics/processes/ProtonInelastic/PreCompound/setEmax 170 MeV

This process has a default dataset (G4HadronInelasticDataSet) and an alternative dataset
(G4ProtonInelasticCrossSection). There are 6 models available:

G4LEProtonInelastic
G4BertiniCascade
G4BinaryCascade
PreCompound
G4QMDReaction

Inelastic process for ion

This process manage inelastic interaction of ions with matter. This process is valid for GenericIon, alpha,
deuteron and triton. For example, a complete selection of models and data set for ions:

/gate/physics/addProcess IonInelastic Default
/gate/physics/processes/IonInelastic/setModel G4BinaryLightIonReaction Default
/gate/physics/processes/IonInelastic/setModel G4LEDeuteronInelastic deuteron

/gate/physics/processes/IonInelastic/setModel G4LETritonInelastic triton
/gate/physics/processes/IonInelastic/setModel G4LEAlphaInelastic alpha
/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmin 80 MeV deuteron
/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmax 20 GeV deuteron
/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmin 80 MeV triton
/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmax 20 GeV triton
/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmin 80 MeV alpha
/gate/physics/processes/IonInelastic/G4BinaryLightIonReaction/setEmax 20 GeV alpha
/gate/physics/processes/IonInelastic/G4LEDeuteronInelastic/setEmin 0 MeV deuteron
/gate/physics/processes/IonInelastic/G4LEDeuteronInelastic/setEmax 80 MeV deuteron
/gate/physics/processes/IonInelastic/G4LETritonInelastic/setEmin 0 MeV triton
/gate/physics/processes/IonInelastic/G4LETritonInelastic/setEmax 80 MeV triton
/gate/physics/processes/IonInelastic/G4LEAlphaInelastic/setEmin 0 MeV alpha
/gate/physics/processes/IonInelastic/G4LEAlphaInelastic/setEmax 80 MeV alpha
/gate/physics/processes/IonInelastic/setDataSet G4IonsShenCrossSection GenericIon
/gate/physics/processes/IonInelastic/setDataSet G4TripathiLightCrossSection deuteron
/gate/physics/processes/IonInelastic/setDataSet G4TripathiLightCrossSection triton
/gate/physics/processes/IonInelastic/setDataSet G4TripathiLightCrossSection alpha

The IonInelastic process includes the G4IonInelasticProcess for GenericIon, the G4DeuteronInelasticProcess
for deuteron, the G4TritonInelasticProcess for triton and the G4AlphaInelasticProcess for alpha. The
G4QMDReaction model and the G4BinaryLightIonReaction model are available for all ions. For
GenericIon, one additional model (G4BinaryLightIonReaction) and 5 datasets are available :

G4TripathiCrossSection
G4IonsKoxCrossSection
G4IonsShenCrossSection
G4IonsSihverCrossSection
G4TripathiLightCrossSection

Alpha, deuteron and triton have a default data set (G4HadronInelasticDataSet) and a alternative dataset
(G4TripathiLightCrossSection). There are also specific models for each particle: G4LEDeuteronInelastic,
G4LETritonInelastic, G4LEAlphaInelastic.

Pions

The inelastic interaction of pi+ and pi- with matter is handled by PionPlusInelastic and PionMinusInelastic
processes. These processes have two specific models (G4LEPionMinusInelastic - G4LEPionPlusInelastic)
and three common models:

Bertini Cascade
Binary Cascade
Leading Particle Bias

The default dataset is G4HadronInelasticDataSet. There is an alternative dataset: G4PiNuclearCrossSection.

/gate/physics/addProcess PionPlusInelastic pi+
/gate/physics/processes/PionPlusInelastic/setModel G4LEPionPlusInelastic pi+
/gate/physics/addProcess PionMinusInelastic pi-
/gate/physics/processes/PionMinusInelastic/setModel G4LEPionMinusInelastic pi-

Neutrons

The interactions of neutrons at low energies are split into four parts. We consider radiative capture, elastic
scattering, fission, and inelastic scattering as separate processes. Each processes have standard models and
datasets like others particles. In additions, some "high precision" models and datasets are provided for low
energy interactions. The high precision neutron models depend on an evaluated neutron data library

(G4NDL) for cross sections, angular distributions and final state information. G4NDL data comes largely
from the ENDF/B-VI library.

< ! > For the low energy processes, the download of G4NDL data files is required.

Radiative Capture

The G4LCapture model generates the final state for neutron capture. The G4NeutronHPCapture model
generates the final state for neutron capture using the high precision neutron model. The
G4NeutronHPorLCapture model generates the final state for neutron capture using the high precision
neutron model when sufficient high precision data is available for the selected element or isotope. When
there is insufficient data, the neutron is captured using the less precise Low Energy Parameterized model.

The G4HadronCaptureDataSet is the default dataset for this process. The alternative high precision dataset is
G4NeutronHPCaptureData.

/gate/physics/addProcess NeutronCapture
/gate/physics/processes/NeutronCapture/setModel G4LCapture

Inelastic scattering

The G4NeutronInelasticProcess is similar than proton inelastic and ion inelastic processes. In addtion to the
standard models (G4LENeutronInelastic, G4BertiniCascade, G4BinaryCascade, PreCompound,
LeadingParticleBias), two models using the high precision data are available. The G4NeutronHPInelastic
model generates the final state for inelastic neutron scattering. The G4NeutronHPorLEInelastic model
generates the final state for inelastic neutron scattering using the high precision neutron model when
sufficient high precision data is available for the selected element or isotope. When there is insufficient data,
the neutron is scattered inelastically using the less precise Low Energy Parameterized model
(G4LENeutronInelastic).

The G4HadronInelasticDataSet is the default dataset for this process. An alternative dataset is the
G4NeutronInelasticCrossSection. The high precision dataset is G4NeutronHPInelasticData.

/gate/physics/addProcess NeutronInelastic
/gate/physics/processes/NeutronInelastic/setModel PreCompound

Fission

The G4LFission model generates the final state for fission. The G4NeutronHPFission model generates the
final state for neutron-induced fission using the high precision neutron model. The G4NeutronHPorLFission
model generates the final state for neutron-induced fission using the high precision neutron model when
sufficient high precision data is available for the selected element or isotope. When there is insufficient data,
neutron-induced fission is performed using the less precise Low Energy Parameterized model.

The G4HadronFissionDataSet is the default dataset for this process. The alternative high precision dataset is
G4NeutronHPFissionData.

/gate/physics/addProcess Fission
/gate/physics/processes/Fission/setModel G4LFission

Particle decay

Particle decay is the spontaneous process of one elementary particle transforming into other elementary
particles. If the particles created are not stable, the decay process can continue. The majority of decays in
Geant4 are implemented using the G4PhaseSpaceDecayChannel class. It simulates phase space decays with
isotropic angular distributions in the center-of-mass system.

/gate/physics/addProcess Decay

Radioactive decay

Radioactive decay is the process in which an unstable atomic nucleus spontaneously loses energy by
emitting ionizing particles and radiation. In Geant4, the decay of radioactive nuclei by α, β + , and β
emission and by electron capture are taken into account. The simulation model is empirical and data-driven,
and uses the Evaluated Nuclear Structure Data File (ENSDF).

< ! > The download of radioactive decay data files is required.

/gate/physics/addProcess RadioactiveDecay

Optical physics processes

For detailed information, see Users Guide V7.2:Generating and tracking optical photons.

Bulk Absorption

This process kills the optical photon. It requires the Material properties filled by the user with the Absorption
length (average distance traveled by a photon before being absorbed by the medium).

/gate/physics/addProcess OpticalAbsorption

Rayleigh Scattering

This process depends on the particle’s polarization. A photon which is not assigned a polarization at
production may not be Rayleigh scattered. The photon is scattered in a new direction that is required to be
perpendicular to the photon’s new polarization in such a way that the final direction, initial and final
polarizations are all in one plane. The process requires the Material properties filled with Rayleigh scattering
length (average distance traveled by a photon before it is Rayleigh scattered in the medium).

N.B: For Water ONLY, when scattering lengths are not specified but the user, the Geant4 code calculates
them following the Einstein-Smoluchowski formula.

/gate/physics/addProcess OpticalRayleigh

Mie Scattering

Mie Scattering is an analytical solution of Maxwell’s equations for scattering of optical photons by spherical
particles. It is significant only when the radius of the scattering object is of order of the wave length.The
analytical expressions for Mie Scattering are very complicated since they are a series sum of Bessel
functions.One common approximation made is call Henyey-Greenstein (HG). The implementation in GATE
(Geant4) follows the HG approximation and the treatment of polarization and momentum are similar to that
of Rayleigh scattering.

The process requires Material properties to be filled by the user with Mie scattering length data (MIEHG). In
practice, the user not only needs to provide the attenuation length of Mie scattering, but also needs to
provide the constant parameters of the approximation: MIEHG_FORWARD, MIEHG_BACKWARD, and
MIEHG_FORWARD_RATIO.

/gate/physics/addProcess OpticalMie

Processes at Boundaries

The optical boundary process design relies on the concept of surfaces: physical properties of the surface
itself (stored in Materials.xml) and characteristics of the surface specifying the two ordered pairs of physical
volumes touching at the surface (Surface.xml).

When the surface concept is not needed, and a perfectly smooth surface exists between two dielectric
materials, the only relevant property is the index of refraction, a quantity stored with the material.

/gate/physics/addProcess OpticalBoundary

Wavelength Shifting or Fluorescence

Fluorescence is the result of a three-stage process that occurs in certain molecules called fluorophores or
fluorescent dyes. A fluorescent probe is a fluorophore designed to respond to a specific stimulus or to
localize within a specific region of a biological specimen. The process responsible for the fluorescence
involves the creation of an excited electronic singlet state by optical absorption and subsequent emission of
an optical photon of lower energy than the excitation photon.

/gate/physics/addProcess OpticalWLS

Magnetic field
A magnetic field can be defined. It will be attached and thus active in the whole world volume. It is currently
not possible to confine the field to another volume. The following command can be used to activate and
define the magnetic field properties:

/gate/geometry/setMagField Bx By Bz Unit

Here is the help for the command:

Command /gate/geometry/setMagField
Guidance :
Define magnetic field.

Parameter : Bx
 Parameter type : d
 Omittable : False

Parameter : By
 Parameter type : d
 Omittable : False

Parameter : Bz
 Parameter type : d
 Omittable : False

Parameter : Unit
 Parameter type : s
 Omittable : True
 Default value : tesla
 Candidates : T kG G tesla kilogauss gauss

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Setting_up_the_physics"

This page was last modified on 8 February 2016, at 12:25.

Users Guide V7.2:Cut and Variance Reduction
Technics
From GATE collaborative documentation wiki

Table of Contents
Production threshold, step limiter and special cuts

Production threshold
X-Ray cuts and auger electrons in photo-electric process
Step limiter
Special cuts

Variance reduction
Splitting and russian roulette

Splitting
Russian roulette

Selective splitting and russian roulette

Production threshold, step limiter and special cuts

Production threshold

To avoid infrared divergence, charged particles processes (ionization and bremsstrahlung) require a threshold
below which no secondary particles will be generated. Because of this requirement, gammas, electrons and
positrons require production thresholds which the user should define. This threshold should be defined as a
distance, or range cut-off, which is internally converted to an energy for individual materials. Production
thresholds are defined for a geometrical region. In GATE, each volume is considered as a geometrical region.
If no cut is defined, the region inherited the threshold of the parent volume. The default cut value of the world
is set to 1.0 mm.

/gate/physics/Gamma/SetCutInRegion [Volume Name] [Cut value] [Unit]
/gate/physics/Electron/SetCutInRegion [Volume Name] [Cut value] [Unit]
/gate/physics/Positron/SetCutInRegion [Volume Name] [Cut value] [Unit]

For example:

/gate/physics/Gamma/SetCutInRegion world 1.0 mm

The list of production threshold in range and in energy for each volume can be display with the command:

/gate/physics/displayCuts

User should use this command after the initilization.

X-Ray cuts and auger electrons in photo-electric process

Secondary electron and photon production in low energy photo-electric process (livermore and penelope
models) could be customized.

The auger electron could be activated in livermore and penelope models:

/gate/physics/processes/PhotoElectric/setAugerElectron true

In livermore model, an energy threshold could be defined from which secondary particles are produced. The
threshold is defined for the whole world of the simulation.

/gate/physics/processes/PhotoElectric/setDeltaRayCut [value] [unit]
/gate/physics/processes/PhotoElectric/setXRayCut [value] [unit]

Step limiter

< ! > This part is recommended for advanced users only!

The step limiter can be considered as a process with fixed step size. It allows to limit the maximum size of
step. As for production threshold, the step limiter is defined for a geometrical region and the region can inherit
the step limiter of the parent volume. User have to define the step size in the region:

/gate/physics/SetMaxStepSizeInRegion [Volume Name] [Step size] [Unit]

For example:

/gate/physics/SetMaxStepSizeInRegion world 1.0 mm

Then, the step limiter process has to be add to particles:

/gate/physics/ActivateStepLimiter proton

Special cuts

< ! > This part is recommended for advanced users only!

The user can define four cuts to limit the tracking of a particle:

the maximum total track length
the maximum total time of flight
the minimum kinetic energy
the minimum remaining range

While step limiter is affected to a step, special cuts are affected to a track. When a particle is stopped, the
energy is deposited locally. As for production threshold, the special cuts are defined for a geometrical region
and the region can inherit the special cuts of the parent volume.

User have to define the values of the special cuts in the region and activate the cuts for particles.

/gate/physics/SetMaxToFInRegion world 5 s
/gate/physics/SetMinKineticEnergyInRegion world 1 keV
/gate/physics/SetMaxTrackLengthInRegion world 0.01 mm
/gate/physics/SetMinRemainingRangeInRegion world 0.02 mm
/gate/physics/ActivateSpecialCuts proton

The user does not have to define all the cuts. The ActivateSpecialCuts command is effective for all the special
cuts that are defined.

Variance reduction
Two standard reduction variance techniques are available in GATE: splitting and russian roulette. The weight
of secondary particles is recalculated in function of the number of secondaries generated. User can also
defined filters to increase the efficiency of these techniques.

< ! > User have to verify that all the tools he used in his simulation take into account particle weight!

Splitting and russian roulette

Splitting

In this technique, the final state of the process is generated N times and the weight of each secondary is 1/N.

/gate/physics/processes/Bremsstrahlung/activateSplitting [Particle] [N]

Parameter : [Particle]
Parameter type : s
Omittable : False

Parameter : [N]
Parameter type : i
Omittable : False

Example: to split 100 times the electron bremsstrahlung photon (not that we specify that the e- is the particle
which do the bremsstrahlung, but the split is applied on the generated photon):

/gate/physics/processes/Bremsstrahlung/activateSplitting e- 100

Russian roulette

In this technique, Russian roulette is played on secondary particles. The survival probability is 1/N and the
weight of each secondary is N.

/gate/physics/processes/Bremsstrahlung/activateRussianRoulette [Particle] [N]

Parameter : [Particle]
Parameter type : s
Omittable : False

Parameter : [N]
Parameter type : i
Omittable : False

Example: to keep 2% of electron bremsstrahlung photon (2/100 = 1/50):

/gate/physics/processes/Bremsstrahlung/activateRussianRoulette e- 50

Selective splitting and russian roulette

To increase the efficiency of the splitting and the russian roulette technique, user can add selections criteria on
the incident (primary) or secondary particles. The selection is done with filters. The filters for splitting and
russian roulette are the same as for Actors. For example, to split bremsstrahlung photons with a vector
direction inside a cone of 20 degrees around the x axis:

/gate/physics/processes/Bremsstrahlung/addFilter angleFilter secondaries
/gate/physics/processes/Bremsstrahlung/secondaries/angleFilter/setAngle 20
/gate/physics/processes/Bremsstrahlung/secondaries/angleFilter/setDirection 1 0 0

There are several filters types: filters on particle, particle ID, energy, direction, volume... See the chapter on
Actor for a description of all filters.

TLE and seTLE (Track Length Estimator)

See the TLEDoseActor and SETLEDoseActor here.

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Cut_and_Variance_Reduction_Technics"

This page was last modified on 8 February 2016, at 12:13.

Users Guide V7.2:Source
From GATE collaborative documentation wiki

Table of Contents
The GPS (General Particle Source)
Creating a source

Adding a source
Defining the type of source
Defining the energy
Defining the angular distribution of the emission
Defining the shape of the source
Define the placement of the source
Movement of a source

Attach to a volume
Confining a source
Example: two gammas

Defining a cold source
Visualizing a source
Intensity

Pencil Beam source
TPS Pencil Beam source
Fast 90Y source

The GPS (General Particle Source)
To introduce a source into a GATE simulation, the user has to define the type of source (voxelized,
linacBeam, phaseSpace, PencilBeam, TPSPencilBeam or GPS) and its feature (angle, energy, and position).
Many activity distributions are available in GATE. At each new event, the source manager decides randomly
which source decays, and generates for it one or more primary particles.

Creating a source
Different type of sources can be defined in the same GATE simulation. Each source is independent. The
command to create a source is given below:

/gate/source/NAME

where "NAME" defines the name of the source.

Adding a source

The next step is to add the source. For this, the users has to type the following GATE command:

/gate/source/addSource NAME

or

/gate/source/addSource NAME gps

In this example, a source "NAME" is added. Once a source has been added, a series of properties must be
assigned to it. These properties are: activity, type of particle(s), energy distribution, energy value or bounds,
angular emission, spatial distribution and location, and half-life. The commands required to assign these
properties are described in the following paragraphs.

Defining the type of source

Many options are available to suit your specific applications:
- Using keywords (e.g. Fluor18, backtoback, linacBeam, phaseSpace, fastI124, fastY90) to help you to
define one or several properties.

Ion source

The ion source type can simulate any ion by defining its atomic number (Z), atomic weight (A), ionic charge
in units of energy (Q), and its excitation energy in keV (E). It incorporates both the radioactive decay and
the atomic de-excitation. This is the most "realistic" way of simulating a radionuclide; however, it is also the
slowest.

To use the ion source:

/gate/source/NAME/gps/particle ion
/gate/source/NAME/gps/ion 8 15 0 0
/gate/source/NAME/setForcedUnstableFlag true
/gate/source/NAME/useDefaultHalfLife

In the above example, an ion source of oxygen-15 has been defined with Z=8, A=15, Q=0, E=0 . If is too
slow, other options are available as described below.

Simple particles

You can choose from a long list of simple particles (e − ,e + , gamma, etc) to use in your simulations (use the
help command to obtain the full list). For example:

/gate/source/NAME/gps/particle gamma

defines a photon source and

/gate/source/NAME/gps/particle e+

defines a positron source. If you choose to use a particle, you will have to define more properties. As an
example, the correct use of a positron source simulating fluorine-18 is:

/gate/source/NAME/gps/particle e+
/gate/source/NAME/gps/energytype Fluor18
/gate/source/NAME/setForcedUnstableFlag true
/gate/source/NAME/setForcedHalfLife 6586 s

In the above example, more properties of fluorine-18 have been added by using the helper keyword Fluor18
(see below): half-life and energy distribution. Note that the branching ratios are not respected with this kind
of simulation because no decay is simulated, i.e. emission is 100% positron. You may want to lower the
activity by an appropriate factor to take this better point into account.

Helper keywords

These keywords are defined to help you to define the particle properties. The first three keywords define an
positron energy distribution resulting from common beta emitters, and the last one defines a special two-
particle source.
For instance, Fluor18 defines the positron energy spectrum of fluorine-18. Note that this keyword define
only the energy spectrum, you still have to specify the particle e + and the half-life.

Back-to-back This keyword is implemented for PET simulations where two annihilation photons are
generated at 180 degrees. This type of source is faster to simulate than the ion source or the positron source
and allows for selecting emission angle. To use the back-to-back source type:

/gate/source/NAME/setType backtoback

Note that there are no radioactive decays simulated when using the back-to-back type and that you still have
to define the particle (gamma), energy type (Mono) and energy-value (0.511 MeV).

FastI124

FastI124 is a special source implementing a simplified decay scheme of the non-pure beta emitter iodine-124
in which positrons are emitted but not neutrinos, there is no nuclear recoil, gammas are emitted if their
emission probability is > 1%; and no atomic de-excitation occurs (no x-rays, Auger electrons). These
simplifications allow for an increase in speed with respect to the ion source while retaining important
features of iodine-124, i.e. gammas may be emitted concurrently with positrons to possibly create "dirty"
coincidences. Since decay is simulated, branching ratios are respected hence no activity compensation is
necessary.

To use the fastI124 source:

/gate/source/NAME/setType fastI124

The source takes care of particle definitions (gamma, positron) and energy distribution so that there is no
need to specify a particle or mention its energy.

Defining the activity

To define the activity of the given source, the user defines the amount of activity and its unit using the
following command:

/gate/source/NAME/setActivity 5. becquerel

In this example, the total activity of the source referred to as "NAME" is set to 5 Bq. The activity can be
defined in Curie (Ci) as well as in Becquerel (Bq).

Defining the energy

Energy distribution

If the source does not take care of the type of energy distribution (e.g. fastI124), then it has to be explicitly
defined. This can be achieved either by using a pre-defined spectrum (see helper keywords above) or by
using built-in distributions.

Candidates for built-in energy distributions are: mono-energetic "Mono", linear "Lin", powerlaw "Pow",
exponential "Exp", Gaussian "Gauss", bremstrahlung "Brem", black-body "Bbody", cosmic diffuse gamma
ray "Cdg", user-defined histogram "UserSpectrum", arbitrary point-wise spectrum "Arb", and user-defined
energy per nucleon histogram "Epn". Capitalization is important: only strings given exactly as above will be
recognized.

In the following example, all particles have the same energy:

/gate/source/NAME/gps/energytype Mono

Energy value

You may have to specify the energy value (or bounds) depending on the type of energy distribution you have
selected. For example, for monoenergetic distributions (like back-to-back sources), you specify the energy
value with:

/gate/source/NAME/gps/monoenergy 511. keV

In the case of ions, the kinetic energy must be 0 since the ions are at rest:

/gate/source/NAME/gps/monoenergy 0. ev

Any type of energy unit within the International System of Units (SI) can be used: eV, GeV, MeV, keV...

Examples

1. ion source for fluorine-18

/gate/source/NAME/gps/particle ion
/gate/source/NAME/gps/ion 9 18 0 0
/gate/source/NAME/gps/monoenergy 0. keV
/gate/source/NAME/setForcedUnstableFlag true
WARNING - DEBUG - New command line to debug the use of ion particle type
/gate/source/F18/useDefaultHalfLife

2. positron source for flourine-18

/gate/source/NAME/gps/particle e+

/gate/source/NAME/gps/energytype Fluor18
/gate/source/NAME/setForcedUnstableFlag true
/gate/source/NAME/setForcedHalfLife 6586 s

3. backtoback for fluorine-18

/gate/source/NAME/setType backtoback
/gate/source/NAME/gps/particle gamma
/gate/source/NAME/gps/monoenergy 511. keV
/gate/source/NAME/setForcedUnstableFlag true
/gate/source/NAME/setForcedHalfLife 6586 s

4. fast iodine-124 source

/gate/source/NAME/setType fastI124
/gate/source/NAME/setForcedUnstableFlag true
/gate/source/NAME/setForcedHalfLife 360806 s

Figure 7.1: Properties of radioactive sources

Another way to define the energy of a radioactive source is to use the energytype UserSpectrum. You can
define 3 different user spectra: a discrete spectrum, a histogram or a linear interpolated spectrum

Example

 ###################### Mode 1: Discrete Spectrum ###################
/gate/source/addsource spectrumLine gps
/gate/source/spectrumLine/gps/particle gamma
/gate/source/spectrumLine/gps/energytype UserSpectrum
/gate/source/spectrumLine/gps/setSpectrumFile ../data/DiscreteSpectrum.txt
/gate/source/spectrumLine/setIntensity 1
 #################### Mode 1: Discrete Spectrum ####################

 #################### Mode 2: Histogram ####################
/gate/source/addSource histogram gps
/gate/source/histogram/gps/particle e-
/gate/source/histogram/gps/energytype UserSpectrum
/gate/source/histogram/gps/setSpectrumFile ../data/Histogram.txt
/gate/source/histogram/setIntensity 10
#################### Mode 2: Histogram ####################

#################### Mode 3: Linear interpolation spectrum ####################
/gate/source/addSource interpolationSpectrum gps
/gate/source/interpolationSpectrum/gps/particle e-
/gate/source/interpolationSpectrum/gps/energytype UserSpectrum
/gate/source/interpolationSpectrum/gps/setSpectrumFile ../data/InterpolationSpectrum.txt
/gate/source/interpolationSpectrum/setIntensity 10
#################### Mode 3: Linear interpolation spectrum ####################

The user spectra are specified by a text file. The first number on the first line indicates the mode as follows: 1
- discrete, 2 - histogram, and 3 - interpolated spectrum. The second number on the first line specifies the
energy, in MeV, of the lower edge of the first bin in histogram mode. (Though ignored in the discrete and
interpolated modes, it must be present for the file to parse correctly.) The remaining lines specify the energy,
in MeV, and the associated probability weighting. The probabilities will normalized by the GATE software.

The discrete spectrum generates particles with one of the listed energies.

################DiscreteSpectrum.txt ###################
1 0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0
1.2 0.8
1.4 0.6
1.6 0.4
1.8 0.2
###

In histogram mode, the energy specified on each line corresponds to the upper edge of the respective bin.
The energies of the generated particles will be between the minimum energy, specified on the first line of the
file, and the upper edge of the last bin. Within each bin, the energies are distributed uniformly.

################## Histogram.txt #####################
2 2
2.2 0.2
2.4 0.4
2.6 0.6
2.8 0.8
3.0 1
3.2 0.8
3.4 0.6
3.6 0.4
3.8 0.2
##

In interpolated mode, the energy of the generated particle will fall between the first and last energy specified,
according to the probability distribution created by piecewise-linear interpolation between the points
provided.

################ InterpolationSpectrum.txt #############
3 0
4.2 0.2
4.4 0.4
4.6 0.6
4.8 0.8
5.0 1
5.2 0.8
5.4 0.6
5.6 0.4
5.8 0.2

###

The following image present the result obtain for the 3 examples (available in example_UserSpectrum
repository)

Figure 7.2 : 3 different User spectra

Defining the angular distribution of the emission

An emission angle distribution can be defined with the angular span using:

/gate/source/NAME/gps/angtype iso
/gate/source/NAME/gps/mintheta 90. deg
/gate/source/NAME/gps/maxtheta 90. deg
/gate/source/NAME/gps/minphi 0. deg
/gate/source/NAME/gps/maxphi 360. deg

In this case, all particles have the same polar angle (theta) of 90 degrees. They are all emitted along
directions orthogonal to the z-axis. The particles are emitted with an azimuthal angle (phi) between 0 and
360 degrees, along all possible directions.

By default, a full span of 0-180 degrees for the polar angle and 0-360 degrees for the azimuthal angle are
defined. The emission span can be reduced for back-to-back sources to speed up the simulation.

Defining the shape of the source

The last step is to define its geometry. The following command defines the type of source distribution:

/gate/source/NAME/gps/type Volume

In the above description, a volumic source distribution has been chosen. Other types of source distribution
can be used: Point, Beam, Plane, or Surface. The default value is Point.

For a Plane source, the source shape type can be Circle, Annulus, Ellipsoid, Square, or Rectangle. For both
Surface and Volume sources, this can be Sphere, Ellipsoid, Cylinder, or Para. The default source is a Point
source and so Shape is not set to any of the above types. Each shape has its own parameters:

/gate/source/NAME/gps/shape Cylinder
/gate/source/NAME/gps/radius 1. cm
/gate/source/NAME/gps/halfz 1. mm

In the previous commands, the source is a cylinder with a radius of 1 cm and a length of 2 mm. Very often,
the half-length is given rather than the full length.

To define a circle, the radius (radius) should be set. (In reality it is not really a circle but a disk).
To define an annulus, the inner (radius0) and outer radii (radius) should be given.
To define an ellipse, square , or rectangle, the half-lengths along x (halfx) and y (halfy) have to be
given.
To define a sphere, only the radius (radius) only has to be specified.
To define an ellipsoid, its half-lenghths in x (halfx), y (halfy), and z (halfz) have to be given.
To define a cylinder with its axis along the z-axis, only the radius (radius) and the z half-length (halfz)
have to be specified.
To define parallelepipeds, the x (halfx), y (halfy), and z (halfz) half-lengths, and the angles alpha
(paralp), theta (parthe), and phi (parphi) have to be given.

Define the placement of the source

The position of the source distribution can be defined using:

/gate/source/NAME/gps/centre 1. 0. 0. cm

In that example, the centre of the source distribution is 1 cm off-centered along the x-axis.

Movement of a source

Attach to a volume

The source can be attached to a volume:

/gate/source/[Source name]/attachTo [Volume Name]

If the volume moves during the simulation, the source moves along with the volume. Note that when
attaching a source to a volume, the source's placement becomes relative to the volume.

Confining a source

Note: this is the old way of moving a source. It is very inefficient. Please consider using the "Attach to

a volume" method instead.

To define sources in movement, the source distribution have to be confined in a Geant4 volume. This volume
will be animated using the usual GATE command as described in Chapter 4 of this manual.

The command:

 /gate/source/NAME/gps/confine NAME_P

specifies that the emission must be confined to a volume of the Geant4 geometry. In this case, the emission
distribution is the intersection of the General Particle Source (GPS) and the Geant4 volume. The Geant4
volume must be specified by its physical volume name: GATEname + '_P'.

One should note that the confinment slows down the simulation, the confinement volume must have an
intersection with the GPS shape, and the confinement volume must not be too large as compared to the GPS
shape.

A complete example of a moving source can be found in the SPECT benchmark or in the macro hereafter:

Define the shape/dimensions of the moving source
/gate/MovingSource/geometry/setRmax 5. cm
/gate/MovingSource/geometry/setRmin 0. cm
/gate/MovingSource/geometry/setHeight 20. cm
/gate/MovingSource/moves/insert translation
/gate/MovingSource/translation/setSpeed 0 0 0.04 cm/s

Define the shape/dimensions of the large sourcecontainer
that should contain the full trajectory of the moving source
/gate/source/SourceContainer/gps/type Volume
/gate/source/SourceContainer/gps/shape Cylinder
/gate/source/SourceContainer/gps/radius 4. cm
/gate/source/SourceContainer/gps/halfz 30. cm
Define the placement of the SourceContainer
/gate/source/SourceContainer/gps/centre 0. 0. 0. cm
Define the source as a gamma source
/gate/source/SourceContainer/gps/particle gamma
Define the gamma energy
/gate/source/SourceContainer/gps/energy 140. keV
Set the activity of the source
/gate/source/SourceContainer/setActivity 5000. Bq
Define a confinement and confine the large container to
the MovingSource at a position defined by the time and
the translation speed
/gate/source/SourceContainer/gps/confine MovingSource_P

Example: two gammas

The following example gives a script to insert a point source of back-to-back type.

A new source with an arbitrary name #(``twogamma) is created
/gate/source/addSource twogamma
The total activity of the source is set
/gate/source/twogamma/setActivity 0.0000001 Ci
The source emits pairs of particles back-to-back

/gate/source/twogamma/setType backtoback
The particles emitted by the source are gammas
/gate/source/twogamma/gps/particle gamma
The gammas have an energy of 511 keV
/gate/source/twogamma/gps/energytype Mono
/gate/source/twogamma/gps/monoenergy 0.511 MeV
The source is a full sphere with radius 0.1 mm,
located at the centre of the FOV
/gate/source/twogamma/gps/type Volume
/gate/source/twogamma/gps/shape Sphere
/gate/source/twogamma/gps/radius 0.1 mm
/gate/source/twogamma/gps/centre 0. 0. 0. cm
The angular distribution of emission angles is isotropic
/gate/source/twogamma/gps/angtype iso
The parameters below mean that the source emits
at all angles along the z axis
/gate/source/twogamma/gps/mintheta 0. deg
/gate/source/twogamma/gps/maxtheta 180. deg
Uncomment the parameters below if you want the source
to emit in an XY (transverse) plane
/gate/source/twogamma/gps/mintheta 90. deg
/gate/source/twogamma/gps/maxtheta 90. deg
The parameters below mean that the source emits
at all angles in the transverse (XY) directions
/gate/source/twogamma/gps/minphi 0. deg
/gate/source/twogamma/gps/maxphi 360. deg

Defining a cold source

To define a cold (i.e. with no activity) volume in a phantom, a dedicated command is available.

The command:

/gate/source/NAME/gps/Forbid Volume_Name

The following example explains how to use this option. First you must define a volume that defines the cold
region:

/gate/world/daughters/name cold_area
/gate/world/daughters/insert cylinder
/gate/cold_area/vis/forceWireframe
/gate/cold_area/vis/setColor green
/gate/cold_area/geometry/setRmax 3.0 cm
/gate/cold_area/geometry/setHeight 1. cm

Then you describe your source with the Forbid command:

/gate/source/addSource number1
/gate/source/number1/setActivity 100000. becquerel
/gate/source/number1/gps/particle gamma
/gate/source/number1/setType backtoback
/gate/source/number1/gps/type Volume
/gate/source/number1/gps/shape Cylinder
/gate/source/number1/gps/radius 5. cm
/gate/source/number1/gps/halfz 0.5 cm
/gate/source/number1/gps/centre 0. 0. 0. cm
/gate/source/number1/gps/monoenergy 511. keV
/gate/source/number1/gps/angtype iso
/gate/source/number1/gps/Forbid cold_area
/gate/source/number1/dump 1
/gate/source/list

It is important to remember that the /gate/run/initialize command must have been executed prior to using the
Forbid command because phantom geometries are not available until after they are initialized.

Visualizing a source

To check that sources are at the right location in the geometry, you can use the following command

/gate/source/[Source name]/visualize

along with a real time viewer (e.g. OpenGL). To visualize a source, Gate will randomly pick a certain
number of points within the source and display them on the screen, along with the geometry. The full syntax
is:

/gate/source/[Source name]/visualize count color size

where name is the name of the source, count is the number of random points to pick up (must be > 0 and <=
10000), color is the color to assign to those points (valid colors are: white, gray, grey, black, red, green, blue,
cyan, magenta, yellow), and size is the screen size (in pixels) of each point (must be > 0 and <= 20).

Depending on the size and shape of the source, more or fewer points may be necessary.

Example:

/gate/source/backgroundSource/visualize 2000 yellow 3
/gate/source/hotRegion/visualize 5000 red 2

Intensity

If several sources have been added and no activity is defined, user can use intensity to define the source
priorities. A high intensity correspond to a high priority. For each event, the source is randomly selected
taking into account the intensity of each sources.

/gate/source/MyBeam/setIntensity [value]

Pencil Beam source
The simulation source can be a pencil beam. This source allows for characterizing a beam of particles
having energy and optical properties. This beam can be used for instance in order to characterize a clinical
beam interacting in a passive beam line or to characterize a specific spot from an active beam scanning
delivery system.

/gate/source/addSource [Source name] PencilBeam

One can select the type of particle used for the pencil beam (proton, e-, etc.):

/gate/source/ [Source name] /setParticleType [particle_type]

Alternatively, one can define a specific type of ion, by defining the particle type as "GenericIon" and then
specifying the particle parameters of the ion to be generated: Z: AtomicNumber, A: AtomicMass, Q: Charge
of Ion (in unit of e), E: Excitation energy (in keV). As an example, the definition of a C12 ion beam is given:

/gate/source/ [Source name] /setParticleType GenericIon
/gate/source/PBS/setIonProperties 6 12 6 0

The energy spectrum of the source is Gaussian and is defined by a mean energy and standard deviation:

/gate/source/ [Source name] /setEnergy [mean_energy] [Unit]
/gate/source/ [Source name] /setSigmaEnergy [energy_standard_deviation] [Unit]

The source position can be set as follows:

/gate/source/ [Source name] /setPosition [Pos_X Pos_Y Pos_Z] [Unit]

The pencil beam shape is Gaussian. The spot size can is defined by the standard deviation of the normal
probability density function in x and y directions. The beam default direction being +z.

/gate/source/ [Source name] /setSigmaX [spot_size_X] [Unit]
/gate/source/ [Source name] /setSigmaY [spot_size_Y] [Unit]

The beam is also characterized by its divergences: Theta in the XoZ plan and Phi in the YoZ plan. The beam
divergence is defined by the standard deviation of the normal probability density function:

/gate/source/ [Source name] /setSigmaTheta [divergence_Theta] [Unit]
/gate/source/ [Source name] /setSigmaPhi [divergence_Phi] [Unit]

The correlation between spot size and divergence (in the two plans) is characterized by the beam emittance.
The beam emittance is defined by the standard deviation of the normal probability density function. The
Emittance of the beam has to be lower (or equal) than the ellipse phase space area: [Emittance_X_Theta] <=
Pi* [divergence_Theta] * [spot_size_X] and [Emittance_Y_Phi] <= Pi* [divergence_Phi] * [spot_size_Y].

Please note that for emittance, the unit cannot be selected and has to be "mm*mrad".

/gate/source/ [Source name] /setEllipseXThetaEmittance [Emittance_X_Theta] mm*mrad
/gate/source/ [Source name] /setEllipseYPhiEmittance [Emittance_Y_Phi] mm*mrad

When defining the beam parameters, one can define the beam convergence or divergence in the two plans
(XoZ and YoZ), by setting the "RotationNorm" either to "positive" for a convergent beam or to "negative"
for a divergent beam.

/gate/source/ [Source name] /setEllipseXThetaRotationNorm [negative or positive]
/gate/source/ [Source name] /setEllipseYPhiRotationNorm [negative or positive]

Users can also define the direction of the beam, which is by default +z (0 0 1), by rotating the beam along

the x, y and z axis. For instance, to rotate the beam direction around the x-axis by 90°.

/gate/source/ [Source name] /setRotationAxis 1 0 0
/gate/source/ [Source name] /setRotationAngle 90 deg

The number of particles simulated is defined using the conventional command:

/gate/application/setTotalNumberOfPrimaries [number_of_primaries]

Example

In the following example, we defined a 180 MeV proton beam, with 1 MeV energy spread. The beam is
asymmetrical and convergent. The direction is -Y.

/gate/source/addSource PBS PencilBeam
/gate/source/PBS/setParticleType proton
/gate/source/PBS/setEnergy 188.0 MeV
/gate/source/PBS/setSigmaEnergy 1.0 MeV
/gate/source/PBS/setPosition 0 0 0 mm
/gate/source/PBS/setSigmaX 2 mm
/gate/source/PBS/setSigmaY 4 mm
/gate/source/PBS/setSigmaTheta 3.3 mrad
/gate/source/PBS/setSigmaPhi 3.8 mrad
/gate/source/PBS/setEllipseXThetaEmittance 15 mm*mrad
/gate/source/PBS/setEllipseXThetaRotationNorm negative
/gate/source/PBS/setEllipseYPhiEmittance 20 mm*mrad
/gate/source/PBS/setEllipseYPhiRotationNorm negative
/gate/source/PBS/setRotationAxis 1 0 0
/gate/source/PBS/setRotationAngle 90 deg
/gate/application/setTotalNumberOfPrimaries 10

TPS Pencil Beam source
The source of the simulation can be a stack of pencil beams. This source has been designed in order to allow
the simulation of real treatment plans for active beam scanning delivery techniques.

/gate/source/addSource [Source name] TPSPencilBeam

One can select the type of particle used for the pencil beam (proton, e-, etc.):

/gate/source/ [Source name] /setParticleType [particle_type]

A treatment plan is made of one or multiple fields, each field being described by a gantry angle and a
collection of pencil beams having different energies, directions, weights etc. user has to select the "plan
description file" of the simulation:

/gate/source/ [Source name] /setPlan [plan_description_file]

It is possible to simulate all fields simultaneously or only some of them, by setting the "NotAllowedField"
option. This option allows for ignoring specific fields:

/gate/source/ [Source name] /setNotAllowedFieldID [field_ID_1]
/gate/source/ [Source name] /setNotAllowedFieldID [field_ID_2]
/gate/source/ [Source name] /setNotAllowedFieldID [field_ID_3]

etc.

In the "plan description file", each single spot is characterized by its position at treatment isocenter and also
by its weight (intensity). By default, the weight corresponds to the number of Monitor Units (MU) delivered
and is converted into a number of particles according to the proton stopping power in air. Warning! The
conversion of MU to number of particles has been developed for protons only ! However, it is possible to
define the particle weight as a number of particles (and not as MU), by setting the following command to
true:

/gate/source/ [Source name] /setSpotIntensityAsNbProtons true

As each spot has an intensity in the treatment plan, it is possible to simulate either each spot with the same
probability and setting the dose scoring weight equal to the intensity, or simulate each spot with a probability
related to the intensity and setting the dose scoring weight to 1. The second option is strongly advised (for
efficiency) and used by default. It is possible to select the first or second option by setting the
"FlatGenerationFlag" to true or false, respectively.

/gate/source/ [Source name] /setFlatGenerationFlag false

The physical properties of each single pencil beam delivered are computed using the "source description
file". This file consists in a set of polynomial equations allowing to define the physical and optical properties
of each single pencil beam with energy. Pencil beam properties are those described in the previous section
"Pencil Beam source":

/gate/source/ [Source name] /setSourceDescriptionFile [source_description_file]

Irradiation systems can be tuned with either a convergent beam or a divergent beam at the delivery system
exit. By default, the system is defined as divergent. User can define either a convergent or a divergent beam
by setting the following command either to "true" or "false", respectively:

/gate/source/ [Source name] /setBeamConvergence [true or false]

The number of particles simulated is defined using the conventional command

/gate/application/setTotalNumberOfPrimaries 10

Example

The following example shows how to simulate a proton treatment plan based on the 2 following input files:
"MyPlanDescriptionFile.txt" and "MySourceDescriptionFile.txt". The beam is considered convergent and
the spot intensities are defined as number of protons.

/gate/source/addSource PBS TPSPencilBeam
/gate/source/PBS/setParticleType proton

/gate/source/PBS/setPlan MyPlanDescriptionFile.txt
/gate/source/PBS/setNotAllowedFieldID 1
/gate/source/PBS/setFlatGenerationFlag false
/gate/source/PBS/setSourceDescriptionFile MySourceDescriptionFile.txt
/gate/source/PBS/setSpotIntensityAsNbProtons true
/gate/source/PBS/setBeamConvergence true
/gate/application/setTotalNumberOfPrimaries 10

About the "source_description_file" It contains the source to isocenter distance, and scanning magnets
distance to isocenter in x- and y-directions. These parameters allow for computing the position and direction
of each single pencil beam at the nozzle exit. It contains also 8 polynomial equations: 2 describing the
energy properties (mean energy in MeV and energy spread in % of the mean energy) and 6 describing the
optical properties of the beam (spot size in mm, beam divergence in rad and beam emittance in mm.rad, in
x- and y-directions at nozzle exit). Polynomials are functions of the system energy, which is read in the "plan
description file" for each pencil beam. For each polynomial, one has to give the polynomial order and then
the polynomial parameters. For instance, for a second order polynomial (ax² + bx + c), one has to give the
polynomial order: 2, followed by the a, b and c parameters in this order. Please note that their is no choice
about the units used for the different polynomials!! Please have a look to example
"example_Radiotherapy/example5" in the source code.

About the "plan_description_file" It contains many informations about the plan, but not all of them are
taken into account for the simulation, as for instance the number of fractions. These additional informations
may be used in further releases. Please have a look to example "example_Radiotherapy/example5" and
"Gate/examples/example_Radiotherapy/example5/data/PlanDescriptionToGATE.txt" file. Warning, the
unused fields of the plan description file cannot be removed. The main parameters of the file are the number
of fields, gantry angle for each field, energy of each layer from each field, number of spot in each layer, spot
description (position in x- and y- direction at isocenter and intensity) for each spot from each layer.

The fastY90 source
The fastY90 source will be part of GATE release 7.3, but it is also available in the development versions of
GATE 7.2 availiable on GitHub as of June 2016

The fastY90 source can be used to simulate PET or SPECT imaging of 90Y sources. Rather than simulating
the full electron transport of the emitted beta particle, the fastY90 source uses a pre-calculated
bremsstrahlung kernel to generate the photons directly to speed up the simulation. Note that since the kernel
has been calculated using a point source in water, simulations that use this source are only valid for
modelling sources inside water or materials of similar density and Zeff. For accurate simulation, the
attenuating media must also extend somewhat beyond the range of the source by several mm. Although the
size of the pre-calculated kernel has a radius of 12 mm, more than 95% of all bremsstrahlung is generated
within 6 mm of the source, a higher fraction if only the higher energy bremsstrahlung is considered.

The fastY90 model includes the positron arising from internal pair production (0+/0+ transition), though not
the 2.186 MeV gamma (2+/0+ transition).

To use the fastY90 source:

/gate/source/addSource mySource fastY90

Simuations with the fastY90 source can be further sped up by adding a low energy cutoff to the
bremsstrahlung generation, effictively ignoring those bremsstrahlung photons with too little energy to play
any role in imaging. For example:

/gate/source/mySource/setMinBremEnergy 50 keV

The 90Y decay produces a positron with a prevalence of about 31.86 ppm. Although the model defaults to
this value, it can be modified (for testing purposes, for example) by the setPositronProbabiliity command:

/gate/source/mySource/setPositronProbability 0.00003186

Using a voxelized distribution with the fastY90 source

The fastY90 source can be used with a voxelized distribution. The voxelized distribution must be in the
Interfile format, with a header file that contains, at minimum, the name of the data file, the matrix size, and
the scale factor.

/gate/source/mySource/loadVoxelizedPhantom tia_map.h.hdr

!INTERFILE :=
!name of data file :=tia_map.v
matrix size[1] := 256
matrix size[2] := 256
matrix size[3] := 147
scale factor (mm/pixel) [1]:= 1.91
scale factor (mm/pixel) [2]:= -1.91
scale factor (mm/pixel) [3]:= -2.00

The data file must be a raw binary containing data in IEEE 32-bit floating point format. The voxelized
distribution will be scaled internally to create a 3D probability map of the geometry of the source, but the
total activity is set by the setActivity command as for any other source. By default, the location of the
voxelized source will be centred at the origin. The position of the voxelized distribution can also be changed
using the setVoxelizedPhantomPosition command to specify the position of the first pixel in the data file.

gate/source/mySource/setVoxelizedPhantomPosition -3.5 6.0 -10.0 cm

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Source"

This page was last modified on 1 June 2016, at 14:03.

Users Guide V7.2:Voxelized Source and Phantom
From GATE collaborative documentation wiki

Table of Contents
Voxelized Phantoms and Sources

Introduction
Description of voxelized geometry

Regular parameterization method
Nested parameterization method
Regionalized parameterization method
Fictitious interaction

Description of voxelized phantoms
Conversion into material definitions
Example of voxelized phantom description macro
For RT applications only: Automated HU stoichiometric calibration

Description of voxelized source
Conversion into activity levels
Example of voxelized source description macro

Dose collection
Real-time motion management for voxellized source and phantom

Voxelized Source and Phantom
Introduction
Voxelized source and phantom's purpose is the use of digital phantoms or patient data as inhomogeneous
anthropomorphic attenuation maps or emission sources so as to simulate and thus reproduce realistic
acquisitions.

From its first public release, GATE is able to read digital phantom or clinic data stored in various image file
formats so as to allow users to read attenuation maps or emission data from these voxelized phantoms and
sources.

To read in voxelized geometry, GATE requires a text file for the description of materials
(AttenuationRange.dat for instance) and a 3D image stored in one of the following formats: ASCII, Interfile
(8-bit, 16- or 32-bit Signed and Unsigned, and 32- or 64-bit Real), Analyze, MetaImage and DICOM
(coming soon). The text file must provide a number of subdivisions, define intervals associated to each
subdivision and attach them with a correlated material name.

Example of AttenuationRange.dat file:

Number of subdivisions
3
Define the intervals and attach a correlated material
0 10 Air
11 200 Water
201 255 SpineBone

To read in voxelized sources, GATE requires a text file for the description of activity levels
(ActivityRange.dat for instance) and a 3D image stored in one of the following formats: ASCII, Interfile (8-
bit, 16- or 32-bit Signed and Unsigned, and 32- or 64-bit Real), Analyze, MetaImage and DICOM (coming
soon). The text file must provide a number of subdivisions, define intervals associated to each subdivision
and attach them with a correlated activity (in Bq). The possibility to extend image file formats for voxelized
sources is still under development.

Example of ActivityRange.dat file:

Number of subdivisions
6
Define the intervals and attach a correlated activity (in Bq)
200 210 1.
211 220 3.
221 230 5.
231 240 10.
241 250 20.
251 255 40.

Voxelized phantoms

Description of voxelized geometry

To import digital phantom or patient data to voxelized geometry, GATE needs a convenient method to
describe multiple copies of a volume inside a mother volume. Obviously, this description can lead to
problem of memory consumption and hence affect the efficiency of tracking algorithm (computation of the
distance to the next boundary, search for the neighbouring voxels, particles stopped at each boundary etc.)

To save both memory consumption and computation time when simulating voxelized phantoms, new
parameterization methods derived from Geant4 together with their corresponding navigation algorithms are
often developed.

Regular parameterization method

Since Geant4.9.1 a new navigation algorithm, dubbed regular navigation, can be used for the tracking of
particles in voxelized volumes. The regular navigation algorithm performs fast direct neighbouring voxel
identification without a large memory overhead. This is the major source of acceleration of the implemented
regular navigation algorithm. In addition, boundaries between voxels which share the same material can be
ignored. Using this option, the geometry only limits tracking at the boundary between voxels with different
materials, providing a significant reduction of the number of propagation steps. The regular navigator uses a
new algorithm that performs this search only for the neighbours of the actual voxel. It therefore highly
reduces the time spent on this search, as much as the number of voxels is large. It also includes a new
method called ComputeStepSkippingEqualMaterials; when a boundary is encountered, the navigator
searches for the next voxel it should enter and check if its material is the same as the actual one. If this is the
case, this method is directly called again without passing through the navigator manager which loads the
new properties of the next voxel, etc. Therefore the fewer the materials, the faster the simulation. In
conclusion, the time saved using the regular navigator is directly dependent on the number of voxels and the
number of different materials contained in the voxelized phantom. The better acceleration factors were
obtained while simulating PET acquisitions (3 different materials: air, water, bone) with finely sampled
phantom definitions. This factor could be around 3 in those cases. However in any case, even with a lot of
different materials, this navigator will always be faster than using older navigators such as

parameterizedBoxMatrix or compressedMatrix. That is the reason why these navigators still be
progressively deprecated.

Additionally, as the SkipEqualMaterials method can lead to fewer G4steps, one may want to force the
stepping process at each boundary. In that case, the method can be inactivated using the following
command:

/gate/world/anyname/setSkipEqualMaterials 0

Also the particle tracking will inevitably be less effective.

Nested parameterization method

Another method of creating parametrized volumes in Geant4, using nested parametrization and the
corresponding navigation algorithm has been available in GATE since version 6.1. Based on parametrized
approach, this method allows GATE storing a single voxel representation in memory and dynamically
changing its location and composition at run-time during the navigation. The main advantage of this method
is high efficiency in memory space. While reusing the same mechanism as parameterized volume, Nested
representation also splits the 3D volume along the three principal directions, allowing logarithmic finding of
neighbouring voxels. Nested approach supposes geometry has three-dimensional regular reputation of same
shape and size of volumes without gap between volumes and material of such volumes are changing
according to the position. Instead of direct three-dimensional parameterized volume, one can use replicas for
the first and second axes sequentially, and then use one-dimensional parameterization along the third axis.
This approach requires much less memory access and consumption for geometry optimization and gives
much faster navigation for ultra-large number of voxels. Using Nested representation, images are split into
sub-volumes of homogeneous composition, which are parallelepipeds, either of the voxel size or larger. The
main drawback is that all the particles are forced to stop at the boundaries of all parallelepipeds, generating a
supplementary step and additional time cost, even if the two neighboring parallelepipeds share the same
content. Such artificial steps occur very often as human organs are far from being parallelepipedic.

Regionalized parameterization method

Recently, some GATE developers have proposed a new method for efficient particle transportation in
voxelized geometry for Monte Carlo simulations, especially for calculating dose distribution in CT images
for radiation therapy. The proposed approach, based on an implicit volume representation named segmented
volume, coupled with an adapted segmentation procedure and a distance map, allows them to minimize the
number of boundary crossings, which slows down simulation. Before being implemented within GATE, the
method was developed using the GEANT4 toolkit and compared to four other methods: one box per voxel,
parameterized volumes, octree-based volumes, and nested parameterized volumes. For each representation,
they compared dose distribution, time, and memory consumption. The proposed method allows them to
decrease computational time by up to a factor of 15, while keeping memory consumption low, and without
any modification of the transportation engine. Speeding up is related to the geometry complexity and the
number of different materials used. They obtained an optimal number of steps with removal of all
unnecessary steps between adjacent voxels sharing a similar material. However, the cost of each step is
increased. When the number of steps cannot be decreased enough, due for example, to the large number of
material boundaries, such a method is not considered suitable. Thus, optimizing the representation of an
image in memory potentially increases computing efficiency.

Fictitious interaction

Important note: so far, this method is available in GATE v7.0 version using Interfile reader only.

For detailed information, please refer to Users_Guide_V7.2:Voxelized_Source_and_Phantom#Speeding-
up_tracking:_Fictitious_interaction

Description of voxelized phantoms

Regular, Nested and Regionalized parametrization methods together with their corresponding navigation
algorithms are available in GATE V7.0 for voxelized phantoms. Note that so far their current
implementations do not support voxel visualization attributes on a per material basis.

To create a parameterized phantom object using any of the three above-mentioned methods, one can use the
corresponding command lines as follows:

/gate/world/daughters/name anyname
/gate/world/daughters/insert ImageRegularParametrisedVolume

Or

/gate/world/daughters/name anyname
/gate/world/daughters/insert ImageNestedParametrisedVolume

Or

/gate/world/daughters/name anyname
/gate/world/daughters/insert ImageRegionalizedVolume

All these three methods supports 3D images stored in various image file formats, which is automatically
defined from their extension:

ASCII
Interfile format: header .h33 + raw image .i33
Analyze format: header .hdr + raw image .img
MetaImage format: header. mhd + raw image .raw
DICOM format (dcm) is expected for the next GATE version (7.3)

Conversion into material definitions

Whatever the navigation algorithm selected, conversion of image grayscales into material definitions is
performed as follows:

When already defined in GateMaterials.db file, appropriate material properties are assigned to each voxel
encoded value using either a range translator (to be used with images providing label values) or a units to
materials conversion descriptor (to be used with images providing label or HU values).

Range translator

Tables read by the range translator have a prescribed format.

The first line defines the number of material subdivisions (i.e. the number of subsequent lines). The
following lines describe the intervals (i.e. range) of encoded values (bits or segmented values) associated to

each subdivision (i.e material), followed by a material name. A particular material will be assigned to each
voxel whose value falls within the material range.

One can keep specifying visibility boolean (true or false) and color attribute values (red, green, blue
components and transparency coefficient) within the range translator as he did when using a previous GATE
version. However, as previously mentioned, so far current implementations of any of the three new
parametrization methods do not support voxel visualization attributes on a per material basis, hence
preventing the voxelized phantom from being displayed.

Example of a range translation table (AttenuationRange.dat, for instance)

4
0 0 Air false 0.0 0.0 0.0 0.2
4 4 Water true 1.0 0.0 1.0 0.2
5 5 Water true 0.0 1.0 0.0 0.2
6 15 SpineBone true 0.0 0.0 1.0 0.2

In this example, the number of material subdivisions is 4. Material Air is assigned to pixels with value 0,
Water to pixels with value 4 and 5, and SpineBone to pixels with value between 6 and 15.

Units to materials conversion descriptor

Units to materials conversion descriptor is a simple text file with three columns: Label or HU_start, Label or
HU_end and material_name. It allows to associate a material to each label or HU voxel encoded value in the
image. This text file can be written by hand or generated with the automated method, especially for HU
values (see For RT applications only: Automated HU stoichiometric calibration section)

Example of a units to materials conversion descriptor (AttenuationRange.dat, for instance)

6
0 1 Air
1 4 Water
4 6 Bone
6 16 SpineBone

In this example, the material Air is assigned to pixels with value 0, Water to pixels with value between 1 and
3 and 4 and 5, and SpineBone to pixels with value between 6 and 15.

Example of voxelized phantom description macro

VOXELIZED PHANTOM BASED ON PATIENT DATA
/gate/world/daughters/name patient

INSERT THE PARAMETERIZATION METHOD AND THE CORRESPONDING NAVIGATION ALGORITHM THE MOST APPROPRIATE TO YOUR SIMULATION
/gate/world/daughters/insert ImageRegularParametrisedVolume
/gate/world/daughters/insert ImageNestedParametrisedVolume
/gate/world/daughters/insert ImageRegionalizedVolume

READ IMAGE HEADER FILE (.H33 FOR INTERFILE, .MHD FOR METAIMAGE AND .HDR FOR ANALYZE FORMATS)
In this example, patient.h33 is the header filename of the image stored in Interfile file format. This file format is simple. It consists of two files: 1) patient.h33 is a ASCII file
with the header description of the image (sizes, spacing and origin and other information), and 2) pixels values as binary patient.i33 data.
/gate/patient/geometry/setImage data/patient.h33

[OPTIONAL]
patient-HUmaterials.db is a text file with patient-related material description. If all the wanted material are already into the GateMaterials.db you do not need such additional file.
HU means Hounsfield Units because RT applications mainly used CT images. However, any image type can be used (with floating point voxel value).

/gate/geometry/setMaterialDatabase data/patient-HUmaterials.db

INSERT THE TRANSLATOR THAT WILL CONVERT THE IMAGE FROM DIGITAL VALUES TO MATERIAL INFORMATION
RANGE TRANSLATOR (LABEL VALUES)
/gate/patient/geometry/setRangeToMaterialFile data/patient-HU2mat.dat
#UNITS TO MATERIALS CONVERSION DESCRIPTOR (LABEL OR HU VALUES)
When dealing with HU values, this text file can be written by hand or generated with the automated method (see Automated HU stoichiometric calibration).
/gate/patient/geometry/setHUToMaterialFile data/patient-HU2mat.dat

AS WITH OTHER OBJECTS, ADDITIONAL OPTIONS REGARDING THE POSITION OF THIS PHANTOM CAN ALSO BE SPECIFIED
/gate/patient/placement/setTranslation 0. 0. 0. mm
/gate/patient/placement/setRotationAxis 1 0 0
/gate/patient/placement/setRotationAngle 0 deg

ADD THIS COMMAND LINE, IF YOU WANT TO RETRIEVE INFORMATION ABOUT THE COMPTON AND RAYLEIGH INTERACTIONS WITHIN THIS PHANTOM VOLUME
/gate/hof_brain/attachPhantomSD

FOR IMAGEREGULARPARAMETRISEDVOLUME NAVIGATOR ONLY. COMMAND USED TO SPEED-UP NAVIGATION
/gate/hof_brain/setSkipEqualMaterials 1

Example of Interfile format header

!INTERFILE :=
!GENERAL IMAGE DATA :=
!type of data := Tomographic
!total number of images := 16
study date := 1997:11:28
study time := 00:00:00
imagedata byte order := LITTLEENDIAN
!number of images/energy window := 16
!process status := Reconstructed
!matrix size [1] := 32
!matrix size [2] := 32
!number format := unsigned integer
!number of bytes per pixel := 2
scaling factor (mm/pixel) [1] := +8.8
scaling factor (mm/pixel) [2] := +8.8
!number of projections := 16
!extent of rotation :=
!time per projection (sec) := 0
study duration (sec) := 0
!maximum pixel count := +2.000000e+02
patient orientation := head_in patient
rotation := supine
!GENERAL DATA :=
!data offset in bytes := 0
!name of data file := brain_phantom.i33

Using such an image reader, digital phantom or patient data can be read in as voxelized attenuation
geometries. Additionally, when a sensitive detector (phantomSD) is associated to this phantom, the system
can retrieve information about the Compton and Rayleigh interactions within this volume.

Figure 7.1: attenuation map from digital Hoffman phantom (left:data - right: after translation to material
definition).

For RT applications only: Automated HU stoichiometric calibration

To generate a correspondence between HU (voxel values) and material, you may use the following
commands:

/gate/HounsfieldMaterialGenerator/SetMaterialTable data/Schneider2000MaterialsTable.txt
/gate/HounsfieldMaterialGenerator/SetDensityTable data/Schneider2000DensitiesTable.txt
/gate/HounsfieldMaterialGenerator/SetDensityTolerance 0.1 g/cm3
/gate/HounsfieldMaterialGenerator/SetOutputMaterialDatabaseFilename data/patient-HUmaterials.db
/gate/HounsfieldMaterialGenerator/SetOutputHUMaterialFilename data/patient-HU2mat.txt
/gate/HounsfieldMaterialGenerator/Generate

In this case, you need to provide:

"Schneider2000MaterialsTable.txt" calibration text file allowing to split the HU range into several
materials (see [Schneider2000]).
"Schneider2000DensitiesTable.txt" calibration text file to indicate the relation between HU and mass
density (g/cm3). It is normaly given by calibration of you CT scanner. It is critical that you note that
density values you provide must match to the HU values you declare, so if you set initial HU values
for the materials you have to provide initial density values also. It is a common mistake that you
provide the mean density, making Gate overestimate it when perform the interpolation, so be careful.
the parameter "DensityTolerance" allows the user to define the density tolerance. Even if it is possible
to generate a new Geant4 material (atomic composition and density) for each different HU, it would
lead to too much different materials, with a long initialization time. So we define a single material for
a range of HU belonging to the same material range (in the first calibration Table) and with densities
differing for less than the tolerance value.
the files "patient-HUmaterials.db" and "patient-HU2mat.txt" are generated and can be used with
setMaterialDatabase and SetHUToMaterialFile macros.

Examples are available here (http://wiki.opengatecollaboration.org/?title=GateRT)

Voxelized sources

Since release V7.1, possibilities to read in voxellized sources within GATE have been extended. They all
require the user to provide 3D image stored in one of the following formats: Interfile (8-bit, 16- or 32-bit
Signed and Unsigned, and 32- or 64-bit Real), Analyze, MetaImage and DICOM (coming soon).

Conversion into activity values

Each voxel of the grayscale image is converted into actual activity value using either a linear or a range
(same kind as the voxelized phantom one) translation table.

An example of a range translation table from voxel encoded values to activities (ActivityRange.dat in the
example) is shown below:

3
4 4 1
5 5 3
14 15 5

where you specify the number of subdivisions or intervals (3 in this example), followed by the intervals
definition and the correlated activity attached to each interval. If the number in the ASCII file, for a given
voxel, is for instance between 14 and 15, then the activity for that voxel is set to 5. Bq. The resulting
voxelized source has thus a discretized number of activity values (preliminar segmentation).

Example of voxelized source description macro

Example of voxelized source description macro reading in an InterFile image as source distributions is
detailed below:

!!!WARNING: Macro commands related to voxelized source description have been modified in GATE V7.1!!!
Older ones are being deprecated and will be removed from the next release

DECLARATION OF THE FACT THAT A VOXELIZED SOURCE WILL BE USED
Always use the keyword voxel to declare the type
/gate/source/addSource hof_brain voxel
DECLARATION THAT THE VOXELIZED SOURCE WILL BE ENTERED USING IMAGE DATA
/gate/source/hof_brain/reader/insert image

INSERT THE TRANSLATOR THAT WILL CONVERT THE IMAGE FROM DIGITAL VALUES TO ACTIVITY VALUES
Example for a linear translator: this scales all image values directly into activities
/gate/source/hof_brain/imageReader/translator/insert linear
/gate/source/hof_brain/imageReader/linearTranslator/setScale 1. Bq
Example for a range translator (can not be used simultaneously)
Here the values of the image file are discretized in intervals and are then converted to predefined activities
/gate/source/hof_brain/imageReader/translator/insert range
/gate/source/hof_brain/imageReader/rangeTranslator/readTable ActivityRange.dat
/gate/source/hof_brain/imageReader/rangeTranslator/describe 1

THE FOLLOWING LINE ALLOWS YOU TO INSERT THE IMAGE DATA USING THE APPROPRIATE EXTENSION FILE
/gate/source/hof_brain/imageReader/readFile hof_brain_phantom.h33
/gate/source/hof_brain/imageReader/verbose 1

THE DEFAULT POSITION OF THE VOXELIZED SOURCE IS IN THE 1ST QUARTER
SO THE VOXELIZED SOURCE HAS TO BE SHIFTED OVER HALF ITS DIMENSION IN THE NEGATIVE DIRECTION ON EACH AXIS
/gate/source/hof_brain/setPosition -128. -128. 0. mm
/gate/source/hof_brain/dump 1

THE FOLLOWING LINES CHARACTERIZE THE SIZE (NO DIFFERENCE WITH AN ANALYTICAL SOURCE)
/gate/source/voxel/setType backtoback
/gate/source/voxel/gps/particle gamma
/gate/source/voxel/gps/energytype Mono
/gate/source/voxel/gps/monoenergy 140. keV

/gate/source/voxel/gps/angtype iso
/gate/source/voxel/gps/mintheta 0. deg
/gate/source/voxel/gps/maxtheta 90. deg
/gate/source/voxel/gps/minphi 0. deg
/gate/source/voxel/gps/maxphi 360. deg
/gate/source/voxel/gps/confine NULL

Using this image file reader any digital phantom or patient data, stored in any image format among ASCII,
Interfile, Analyze, MetaImage and DICOM (coming soon), can be read in as emission distribution.
Afterwards, activity levels can be used to determine the number of primary particles for each voxel.

An example of the Hoffman brain phantom, where the gray scales have been translated to activity
distributions is shown in Figure 7.2.

Figure 7.2: emission map from digital Hoffman phantom (left:data - right: translated
activity values).

Dose collection
To collect absorbed dose deposited in the phantom, attach the phantom sensitive detector with the new
attachVoxelPhantomSD command (and not attachPhantomSD) and add a dose output module:

/gate/anyname/attachVoxelPhantomSD
/gate/anyname/addOutput outputModuleName

The output module responds to the following commands:

/gate/output/outputModuleName/saveUncertainty [true|false]
/gate/output/outputModuleName/setFileName anyFileName

The output file is a binary file (number format is 4 bytes float) containing the absorbed dose in cGy. It has
the same dimensions as the phantom. The output module optionally writes a second binary file containing
the uncertainty on absorbed dose expressed as a fraction between 0 and 1. The uncertainty file also has the
same dimensions as the phantom and its creation is controlled by the saveUncertainty command. The file
name is the same as the absorbed dose file with a capital U appended. By default, the output file name is
doseMatrix.bin and the uncertainty file is not created.

Figure 7.2: A simple voxellized phantom
without transparency

Example

Create a simple phantom called CCD
/gate/world/daughters/name CCD
/gate/world/daughters/insert parameterizedBoxMatrix

Read the file : a 300x300x1 array
/gate/CCD/geometry/insertReader image
/gate/CCD/imageReader/insertTranslator tabulated
/gate/CCD/imageReader/tabulatedTranslator/readTable ccdTable.dat
/gate/CCD/imageReader/readFile ccd300Phantom.dat

Place the phantom and rotate it so that it is in the XZ plane
/gate/CCD/placement/setTranslation 0 -82.269 0 mm
/gate/CCD/placement/setRotationAxis 1 0 0
/gate/CCD/placement/setRotationAngle 90 deg

Attach the phantom SD and the output module
/gate/CCD/attachVoxelPhantomSD
/gate/CCD/addOutput doseOutput
/gate/output/doseOutput/saveUncertainty true
/gate/output/doseOutput/setFileName ccdDose.bin

Comments

Depending on the phantom dimensions, the use of a parameterizedBoxMatrix may increase memory usage
by up to a factor of 2 and increase CPU time by 5-50.

If you plan to collect only dose in the phantom, it is suggested that you disable other types of output, for
example:

/gate/output/ascii/disable

Dose calculations

The relative uncertainty on dose is calculated on a per voxel
basis. Let {di}i = 1,...,N be the sequence of energy deposits in a
given voxel, we can calculate the following quantities:

Mean energy deposit:

Sample variance:

s2 = E(d2) − E(d)2

Population variance estimator:

Figure 7.2b: A simple voxellized
phantom with transparency

Standard deviation:

Standard error of the mean:

Real-time motion management for
voxellized source and phantom

Generate N frames for the phantom corresponding to the time
acquisition desired for example 50 frames for 5s so each frame is for .1 s ;
I assume the 50 frames are NCAT_frame_.i33, NCAT_frame_2.i33, NCAT_frame_3.i33,
NCAT_frame_4.i33 $...$ NCAT_frame_N.i33.

/gate/world/daughters/name Ncat
/gate/world/daughters/insert compressedMatrix
/gate/Ncat/geometry/insertReader interfile
/gate/RTPhantom/insert RTVPhantom
/gate/RTVPhantom/AttachTo Ncat
/gate/RTVPhantom/setBaseFileName NCAT
/gate/RTVPhantom/setHeaderFileName NCAT_header.h33
/gate/RTVPhantom/SetNumberOfFrames 50
/gate/RTVPhantom/SetTimePerFrame 0.1 s
/gate/Ncat/interfileReader/insertTranslator range
/gate/Ncat/interfileReader/rangeTranslator/readTable range.dat
/gate/Ncat/interfileReader/rangeTranslator/describe 1
/gate/Ncat/attachPhantomSD
/gate/Ncat/placement/setTranslation 0. 0. 0. mm
/gate/Ncat/interfileReader/describe 1

The header NCAT_header.h33 looks like:

!matrix size [1] := 128
!matrix size [2] := 128
!number format := unsigned integer
scaling factor (mm/pixel) [1] := +3.125000e+00
scaling factor (mm/pixel) [2] := +3.125000e+00
!number of slices := 128
slice thickness (pixels) := +3.125000e+00

For the activity source:

V O X E L S O U R C E
/gate/source/addSource voxel voxel

/gate/source/voxel/reader/insert interfile
/gate/RTVPhantom/AttachToSource voxel
/gate/source/voxel/interfileReader/translator/insert range
/gate/source/voxel/interfileReader/rangeTranslator/readTable activityRange_test.dat
/gate/source/voxel/interfileReader/rangeTranslator/describe 1
/gate/source/voxel/setType backtoback
/gate/source/voxel/gps/particle gamma
/gate/source/voxel/setForcedUnstableFlag true
/gate/source/voxel/setForcedHalfLife 6586.2 s
/gate/source/voxel/gps/energytype Mono
/gate/source/voxel/gps/monoenergy 0.511 MeV
/gate/source/voxel/setPosition -200. -200. -200 mm
/gate/source/voxel/gps/confine NULL
/gate/source/voxel/gps/angtype iso
/gate/source/voxel/dump 1

#TIME ACTIVITY option
/gate/source/voxel/interfileReader/SetTimeActivityTablesFrom TimeActivity_Tables.dat
/gate/source/voxel/interfileReader/SetTimeSampling 0.001 s

The activityRange_test.dat is a text file looking like this:

12
46 46 0
61 61 0
123 123 0
215 215 0
246 246 0
261 261 0
352 352 352
369 369 0
770 770 0
831 831 0
2300 2300 0
950 950 950

The TimeActivity_Tables.dat is a text file looking like this:

2
950 lesion.dat
352 liver.dat

Where the value 950 is the key corresponding in the attenuation map to the lesion and 352 is the key
corresponding in the attenuation map to the liver.\\ Note that lesion.dat is a text file which contains the time
activity table curve for the lesion, as explain here:

19
0 0
0.01 89.5
0.02 158.8
0.03 199.3
0.04 228.1
0.05 250.4
0.06 268.7
0.08 297.4
0.1 319.7
0.15 360.3
0.2 389.1
0.3 429.6

0.4 458.4
0.5 480.7
0.6 498.9
0.7 514.3
0.8 527.7
0.9 539.5
1 550.0

Where first column is the time in second and the second one is the activity in Bq at time t.

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Voxelized_Source_and_Phantom"

This page was last modified on 8 February 2016, at 12:26.

Users Guide V7.2:How to run Gate
From GATE collaborative documentation wiki

Table of Contents
Interactive mode
Running GATE in Qt mode
Running parameterized macros
How to launch DigiGate
How to separate the phantom and detector tracking - Phase space approach
Batch mode

Interactive mode
To start Gate in interactive mode, simply type:

$ Gate

and the following output (or something similar) will appear on the screen:

1 **
2 Geant4 version $Name: $
3 (3-October-2003)
4 Copyright : Geant4 Collaboration
5 **
6 Time set to (s) 0
7 Visualization Manager instantiating...
8 Visualization Manager initialising...
9 Registering graphics systems...
10 You have successfully chosen to use the following graphics systems.
11 Current available graphics systems are:
12 DAWNFILE (DAWNFILE)
13 VRML1FILE (VRML1FILE)
14 VRML2FILE (VRML2FILE)
14 OpenGLImmediateX (OGLIX)
15 OpenGLStoredX (OGLSX)
16 /control/saveHistory
17 /run/verbose 0
18 /event/verbose 1
19 /tracking/verbose 1
20 /gate/timing/setTime 0. s
21 Time set to (s) 0
22 /gate/application/setTimeSlice 1. s
23 Idle>

This output will vary depending on your Gate installation, that is what software was installed and how it was installed. Notice that the numbers on the left do not appear in the
actual output. They are shown here just for didactic purposes.

Lines 1-5 indicates the version of the Geant4 software in your installation. Lines 6-9 are initialization messages from Gate. If you installed Gate with visualization functions,
then you should see messages like lines those appearing in lines 10-15. Then, Gate runs the file prerunGate.mac located in the petsim directory. It then outputs the command
lines 16-22 found in that file. Finally, and if everything went right, then Gate outputs the interpreter command prompt (line 23). This means Gate is ready to read commands
entered by the user.

If you are not yet familiar with Gate commands, you can get help by typing ls:

1 Idle> ls
2 Command directory path : /
3 Sub-directories :
4 /control/ UI control commands.
5 /units/ Available units.
6 /persistency/ Control commands for Persistency package
7 /geometry/ Geometry control commands.
8 /tracking/ TrackingManager and SteppingManager control commands.
9 /event/ EventManager control commands.
10 /run/ Run control commands.
11 /random/ Random number status control commands.
12 /particle/ Particle control commands.
13 /process/ Process Table control commands.
14 /gate/ Gate detector control.
15 /hits/ Sensitive detectors and Hits
16 /digi/ DigitizerModule
17 /vis/ Visualization commands.
18 Commands :
19 Idle>

When the Sub-directories names (lines 4-17) end with a \ (slash), it means you can go deeper in that sub-directory. For instance, let's say you want to find out more about how
to run macros:

1 Idle> ls /control
2 Command directory path : /control/
3 Guidance :
4 UI control commands.
5 Sub-directories :
6 Commands :
7 execute * Execute a macro file.
8 loop * Execute a macro file more than once.
9 foreach * Execute a macro file more than once.
10 suppressAbortion * Suppress the program abortion caused by G4Exception.
11 verbose * Applied command will also be shown on screen.
12 saveHistory * Store command history to a file.
13 stopSavingHistory * Stop saving history file.
14 alias * Set an alias.
15 unalias * Remove an alias.
16 listAlias * List aliases.

17 shell * Execute a (Unix) SHELL command.
18 manual * Display all of sub-directories and commands.
19 createHTML * Generate HTML files for all of sub-directories and commands.
20 maximumStoredHistory * Set maximum number of stored UI commands.
21 Idle>

A * at the end of the Sub-directories names means that it is the last level for that subdirectory. In line 7, it is explained that the command /control/execute executes a macro
file. This command basically reads the macro file and executes the lines as they appear in the file. Suppose, you have a file named myScanner.mac that contains all the
necessary commands to run a particular simulation. Then type:

 1 Idle> /control/execute myScanner.mac

to run the macro file. The macro file myScanner.mac can contain additional /control/execute commands to run other macro files and so on. Gate will read and execute those
files in the order in which they appear. Notice that /control/execute does not start a simulation (data acquisition), it simply reads the commands and executes them. The
command that starts the actual simulation is /gate/application/startDAQ, which is usually the last command found in you macro files.

Depending on the level of verbosity that you have specified in your macro, you will see more or less messages about the simulation. If your simulation contains visualization
commands, you will see an OpenGL window appear with a beautiful picture of your scanner.

At the end of your simulation, the command line interpreter prompt will appear again. To exit the interpreter, type:

Idle> exit
Graphics systems deleted.
Visualization Manager deleting...

You can display the help typing this command:

$ Gate -h

and the following output (or something similar) will appear on the screen:

Printing help!!!
Usage: Gate [OPTION]... MACRO_FILE
Mandatory arguments to long options are mandatory for short options too.
-h, --help print the help
-a, --param set alias. format is '[alias1,value1] [alias2,value2] ...'
--d use the DigiMode
--qt use the Qt visualization mode

Running GATE in Qt mode
First you need to compile Geant4 with the variable 'GEANT4_USE_QT' setting to 'ON'. You can visualize the position of your system using the Qt mode. First you need to
type the following command to your console:

$ Gate --qt

A window will display:

After you launch your macro GATE in the label 'Session:', you could visualize your system in the viewer windows:

In order to use Qt you have to write this line in your GATE macro:

/vis/open OGLSQt

IMPORTANT!!!: Qt visualization mode is a visualization after the simulation. In fact you could zoom, translate, etc... only at the end of the simulation.

Running parameterized macros
It is very common for users to run several simulations that differ in only a few parameters. For instance, a user might have designed a small animal PET scanner and would
like to estimate its performance for five different crystal materials and three energy windows. In that case, the user does not need to write a complete set of macros for each
simulation scenario. Instead, he can write parameterized macros. The actual values of the parameters are specified on the command line when running Gate or they can be
defined with the interpreter.

For instance, suppose we want to parameterize the lower and upper level energy discriminators and the length of coincidence window. Then, we may have the following
Acquisition.mac macro file:

D I G I T I Z E R
1 /gate/digitizer/Singles/insert adder
2 /gate/digitizer/Singles/insert readout
3 /gate/digitizer/Singles/readout/setDepth 1
4 /gate/digitizer/Singles/insert blurring
5 /gate/digitizer/Singles/blurring/setResolution 0.26
6 /gate/digitizer/Singles/blurring/setEnergyOfReference 511. keV
7 /gate/digitizer/Singles/insert thresholder
8 /gate/digitizer/Singles/thresholder/setThreshold {lld} keV
9 /gate/digitizer/Singles/insert upholder
10 /gate/digitizer/Singles/upholder/setUphold {uld} keV
C O I N C I S O R T E R
11 /gate/digitizer/Coincidences/setWindow {CoincWindow} ns

Lines 8, 10, and 11 define aliases for the lower level discriminator, the upper level discriminator, and the length of the coincidence window, respectively. An alias is always
specified between { and } (curled brackets) and it can consist of any set of characters.

To pass actual values to the macro file, we run Gate, for instance, as follows:

$ Gate -a [CoincWindow,10] [lld,350] [uld,650]

It is worth emphasizing the following points about aliases:

The order of the aliases at the command line does not matter.
Aliases are case sensitive, so [lld,350] is not the same as [LLD,350].
All aliases in your macro file(s) must be defined when you run Gate. If some are undefined the simulation will fail.

How to launch DigiGate
GATE offers an operating mode dedicated to digitizer optimization, known as DigiGate (see Users Guide V7.2:Digitizer and readout parameters). DigiGate works by re-
reading a previously generated ROOT hit-file.

The use of DigiGate consists of two steps.

In the first step, the simulation runs according to MacroTest.mac. This macro file should save the Hits data in the root output file with the name gate.root (which is the
default name).
In the second step, the digitizer modifications are made in MacroTest.mac (like a new module for the energy resolution, or a different dead-time...), and then the
analysis is repeated by using the gate.root file as an input file for the program DigiGate. This is achieved by launching Gate with a '-d' option.

 Gate < MacroTest.mac

-> a root output file is produced with Hits information.

-> the digitizer of MacroTest.mac is changed along with the name of the root output file.

Gate --d < MacroTest.mac

-> a new root output file is produced which incorporates the changes due to a different digitizer without having to repeat the particle generation and its propagation.

How to separate the phantom and detector tracking - Phase space approach
To speed-up the simulation, it is possible to split and separate the particle tracking. This is a phase space approach with the possibility to store the phantom tracking particle
history in a root file and to use it as an input file for the detector tracking.

Using Gate in the tracker mode: phantom tracking

Basically, as illustrated in the folder example_TrackerDetector, 3 major command lines are available to use the phantom tracker mode:

Selection of the tracking mode
#
/gate/stepping/SetMode Tracker
#
Setting of the policy regarding the tracker mode
#
/gate/stepping/SetPolicy Option1
/gate/stepping/SetPolicy Option2

The Option1 variable can be chosen from the following list:

StopOnPhantomBoundary (Default): the particles are tracked until the last hit before the phantom boundary ;
StopAfterPhantomBoundary: the particles are traked until the first hit after phantom boundary ;
KillTrackAndSecondaries: StopOnPhantomBoundary + no secondary production.

The Option2 variable may be chosen from:

KeepAll (Default): all particles (primary and secondary) are stored
KeepOnlyPrimaries: only source particles are stored
KeepOnlyPhotons: only photons are stored
KeepOnlyElectrons: only electrons are stored

Two additional command line options are also available:

/gate/stepping/SetEnergyThreshold aThreshold keV

WIth this option, only particles reaching the phantom boundary with an energy greater than a threshold in energy of aThreshold (expressed in keV) will be stored.

/gate/stepping/SetTextOutput status

with a status flag set as On or Off. This command will print Tracks information in the PostStepInfo.txt file.

Finally the tracker mode acquisition will generate N root files named OutPutRoot_TrackerData_number.root. The base output name, which is OutPutRoot in the case of this
example, is chosen by the user with the usual output command line to set the file name:

/gate/output/root/setFileName OutPutRoot

Using Gate in the detector mode: detector tracking

During the tracker mode acquisition, N files are generated with the following name architecture:

OutPutRoot_TrackerData.root
OutPutRoot_TrackerData_1.root
OutPutRoot_TrackerData_2.root

...

OutPutRoot_TrackerData_(N-1).root

To use the Detector Mode, the user must select the mode and specify that N TrackerData files were generated during the tracker mode. All this can be done using the 2
following command lines:

/gate/stepping/SetMode Detector
/gate/stepping/SetNumberOfTrackerDataFiles N

New commands in detector mode

In Detector Mode, we need to tell GATE that N TrackerData files were generated during tracker mode and we should use these command lines:

/gate/stepping/SetMode Detector
/gate/stepping/SetNumberOfTrackerDataFiles N

Batch mode
It is possible to run a Gate simulation in batch mode, i.e. the mode in which you do not need to enter the interpreter and run the /control/execute and exit commands every
time.

If you want to run a simulations in batch mode, you can do so by typing the alias values before the file name of the macro you want to run. (In some previous versions this
was accomplished by redirecting the standard input of Gate with the < symbol and the name of the file you wanted to run.) For example,

$ Gate -a [CoincWindow,10] [lld,350] [uld,650] myScanner.mac

In order to return to command prompt, the last line in myScanner.mac file must be

exit

This is very important, especially when you are running a series of simulations in sequence. If Gate does not find the exit command, it will return to the user interface prompt
and the rest of the simulations will not run.

It is recommended to redirect the terminal output of the simulation (listing of physics processes, sources, run time, etc.) by writing it to a text file instead of printing it in the
terminal. This allows one to store the terminal output of each simulation for later viewing. For example,

$ Gate -a [CoincWindow,10] [lld,350] [uld,650] myScanner.mac > terminal_output.txt

The above command creates a file named terminal_output.txt and does not print to the terminal window.

When running multiple simulations simultaneously from the command line in batch mode, it is often desirable to have the process run in the background. This can be
accomplished by inserting an ampersand "&" symbol at the end of the command. For example,

$ Gate -a [CoincWindow,10] [lld,350] [uld,650] myScanner.mac > terminal_output.txt &

It is recommended (although not compulsory) to avoid running visualization commands in batch mode.

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:How_to_run_Gate"

This page was last modified on 8 February 2016, at 12:27.

Users Guide V7.2:Visualization
From GATE collaborative documentation wiki

Table of Contents
Introduction
Important Hints
Command Lines

Visualization with OpenGL
Visualization of Images

Visualization with DAWN
Visualization with VRML
Axes

Introduction
The visualization options in GATE provide the same functionalities as provided in GEANT4. Most options in GEANT4 to visualize detector
geometry, particle trajectories, tracking steps, etc. are also available in GATE. The graphics systems that can be selected in GATE are:
DAWNFILE, VRMLFILE (versions 1 and 2) and OpenGL in stored and immediate mode, with OpenGL required as an external library. Most of
the libraries are freely available.

Important Hints
When loading digital images using OpenGL, the OpenGL Immediate-X viewer is recommended instead of the frequently used Stored-X viewer.

Using DAWN and VRMLVIEW, complicated geometries, like a huge number of crystals in a cylindrical PET system, may take very long to get
rendered. To decrease the file size and to speed up the visualization, the following option may be used:

/gate/crystal/vis/setVisible 0

Using that option, the individual crystals are not rendered but they are shown as a wireframe instead.

Command Lines
Basic commands provided by the GEANT4-package can be used to set basic vizualisation options, as shown below.

Visualization with OpenGL

The best method is to let Geant4 choose the best OpenGL mode with /vis/open OGL and not force a mode which can be present or not on user
system.

All OpenGL commands are available here:

http://geant4.slac.stanford.edu/Presentations/vis/G4OpenGLTutorial/G4OpenGLTutorial.html

For example, if you wish to change the center of your simulation in order to zoom to a specific part of it, you can use the pan command and
zoom in:

/vis/viewer/panTo -5 -1
/vis/viewer/zoom 4.

V I E W E R
/vis/open OGL
define the zoom factor
/vis/viewer/zoom 1.5
Set the viewing angle
/vis/viewer/viewpointThetaPhi 5 60
Set the drawing style
/vis/viewer/set/style surface
Tell the viewer to draw the volumes
/vis/drawVolume
The trajectories for each run should be drawn together
don't store trajectories = 0; store trajectories = 1
/tracking/storeTrajectory 1
Requests viewer to refresh hits, tracks, etc., at end of event.
Or to accumulate drawings. Detector remains or is redrawn.
/vis/scene/endOfEventAction accumulate

The following commands implement additional options relevant within GATE:

draw object in WireFrame Mode
/gate/block/vis/forceWireframe

or

draw object to appear as a solid
/gate/block/vis/forceSolid

define object color
/gate/block/vis/setColor blue

Instead of block as in the example here, objects like crystal, source, scanner can be assigned specific vizualization properties.

The "autoUpdate" capability has been removed since version 6.0.0 and manual geometry update has to be used instead. This can be done using
the following command at any moment in the GATE command prompt environment:

/gate/geometry/rebuild

Otherwise the complete geometry building is done when /gate/run/initialize command is given.

Visualization of Images
Since 7.0, GATE can show images with OpenGL but only in Immediate mode and the volume of the image must be in WireFrame mode. This
functionality works with X11 and Qt.

Immediate mode

/vis/open OGLI

Stored mode
/vis/open OGLS

Visualization with DAWN

Instead of real-time visualization based on OpenGL, storing images in a file (mostly eps) for further processing might be useful. DAWN offers
such options.

The package can be downloaded from the Internet and installed following the instruction given at
http://geant4.kek.jp/tanaka/src/dawn_3_85e.taz

To use DAWN and DAWNFILE in your macro, a specific open command should be used, in replacement of the opening of OpenGL.

/vis/open DAWNFILE
/vis/viewer/reset
/vis/viewer/set/viewpointThetaPhi 30 0
/vis/viewer/zoom 1.5
/vis/drawVolume
/tracking/storeTrajectory 1

/vis/scene/endOfEventAction accumulate
/vis/viewer/update /vis/viewer/refresh

Specific environment variables have to be set in your shell script to have access to DAWN inside GATE. For instance, in a C-shell:

if (Xn == Xy) then
setenv G4VIS_BUILD_DAWN_DRIVER 1
echo "On this machine the G4VIS_BUILD_DAWN_DRIVER= G4VIS_BUILD_DAWN_DRIVER"
endif

and also

if (Xn == Xy) then
setenv G4VIS_USE_DAWN 1$
echo "On this machine the G4VIS_USE_DAWN= G4VIS_USE_DAWN"
endif

Visualization with VRML

Sometimes, it may be helpful to check a geometry setup by interactively manipulating the visualized scene. These features are offered by the
option VRML2FILE in connection with an appropriate viewer like vrmlview. Such a viewer can be freely downloaded from:
http://www.sim.no/products/VRMLview/

A specific environment variable has to be set first:

setenv G4VRMLFILE_VIEWER vrmlview

For using this option in Gate, the following line has to be added to the macro instead of the corresponding OpenGL opening:

/vis/open VRML2FILE

Again, the environment variables have to be properly set (here C-schell example):

if [Xn = Xy] ;
then G4VIS_BUILD_VRML_DRIVER=1
export G4VIS_BUILD_VRML_DRIVER
echo "On this machine the G4VIS_BUILD_VRML_DRIVER=$G4VIS_BUILD_VRML_DRIVER"
fi

if [Xn = Xy] ;
then G4VIS_USE_VRML=1
export G4VIS_USE_VRML
echo "On this machine the G4VIS_USE_VRML=$G4VIS_USE_VRML"
fi

During processing in GATE, a file is written with the extension wrl.

Axes

Any position in the world is defined with respect to a three-axis system: X, Y and Z. These three axes can be seen in the display window using:

/vis/scene/add/axes

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Visualization"

This page was last modified on 8 February 2016, at 12:14.

Users Guide V7.2:Bibliography
From GATE collaborative documentation wiki

Buvat I and Castiglioni I 2002 Monte Carlo simulations in SPET and PET Q. J. Nucl. Med. 46 48-61

G3 Brun R, Bruyant F, Maire M, McPherson A C, Zanarini P 1987 GEANT3 Technical Report
CERN DD/EE/84-1

EGS4 EGS4 website: http://www.slac.stanford.edu/egs/

MCNP MCNP website: http://laws.lanl.gov/x5/MCNP/index.html

G4 Agostinelli S et al 2003 GEANT4 - a simulation toolkit Nucl. Instr. Meth. A506 250-303
GEANT4 website: http://geant4.web.cern.ch/

MIC02 Santin G, Strul D, Lazaro D, Simon L, Krieguer M, Vieira Martins M, Breton V and
Morel C 2003 GATE: A GEANT4-based simulation platform for PET and SPECT integrating
movement and time management IEEE Trans. Nucl. Sci. 50 1516-1521

Siena02 Strul D, Santin G, Lazaro D, Breton V and Morel C 2003 GATE (GEANT4 Application
for Tomographic Emission): a PET/SPECT general-purpose simulation platform Nucl. Phys. B
(Proc. Suppl.) 125C 75-79

ITBS02 Assié K et al 2004 Monte Carlo simulation in PET and SPECT instrumentation using
GATE to appear in Nucl. Instr. Meth.

GATE Jan S, Santin G, Strul S, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M,
Bloomfield P, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou A F, Choi Y, Chung Y
H, Comtat C, Donnarieix D, Ferrer L, Glick S J, Groiselle C, Kerhoas-Cavata S, Kirov A S,
Kohli V, Koole M, Krieguer M, van der Laan D J, Lamare F, Largeron G, Lartizien C, Lazaro
D, Maas M C, Maigne L, Mayet F, Melot F, Merheb C, Morel C, Nehmeh S, Pennacchio E, Perez
J, Pietrzyk U, Rannou F R, Rey M, Schaart D R, Schmidtlein C R, Simon L, Song T Y, Vieira J
M, Visvikis D, Van de Walle R, Wieërs E 2004 GATE - GEANT4 Application for Tomographic
Emission: a simulation toolkit for PET and SPECT, to be submitted to Phys. Med. Biol.

OpenGATE GATE website: http://www.opengatecollaboration.org

Staelens Staelens S, Strul D, Santin G, Koole M, Vandenberghe S, D'Asseler Y, Lemahieu I and
Van de Walle R 2003 Monte Carlo simulations of a scintillation camera using GATE: validation
and application modelling Phys. Med. Biol. 48 3021-3042

Lazaro Lazaro D, Buvat I, Loudos G, Strul D, Santin G, Giokaris N, Donnarieix D, Maigne L,
Spanoudaki V, Styliaris S, Staelens S and Breton V 2003 Monte Carlo simulation of a CsI(Tl)
gamma camera dedicated to small animal imaging using GATE Phys. Med. Biol.

doxygen doxygen website: http://www.doxygen.org/index.html

RL R. Lecomte at al . Design and Engineering Aspects of a high resolution Positron Tomograph
for small animal imaging. IEEE Trans. Nucl. Sci. Vol 41 , $n0$4, August 1994, 1446-1452

BD Casey M and Nutt R 1986 A multicrystal two dimensional BGO detector block system for
positron emission tomography IEEE Trans. Nucl. Sci. 33 460-463

Biggs Biggs F, and Lighthill R 1990 Preprint Sandia Laboratory, SAND 87-0070

Knoll Knoll G F 1979 Radiation detection and measurement, John Wiley \& Sons , New York

ROOT Brun R, Rademakers F 1997 ROOT - An object oriented data analysis framework Nucl.
Instr. Meth. A389 81-86 ROOT website : http://root.cern.ch/

Interf Interfile website: http://gamma.wustl.edu/tf/caic/interfile33/

FORE Defrise M at al 1997 Exact and approximate rebinning algorithms for 3-D PET data IEEE
Trans. Med. Imag. 16 145-158

LMF List Mode Format (LMF) website: http://www.opengatecollaboration.org

STIR Software for Tomographic Image Reconstruction (STIR) website: http://stir.sourceforge.net

geant4physics Geant4 physics reference manual

geant4user Geant4 User's Guide For Application Developers

levin1996 A. Levin and C. Moisan.

A more physical approach to model the surface treatment of scintillation counters and its
implementation into DETECT. In IEEE Nuclear Science Symposium and Medical Imaging
Conference Record , volume 2, pages 702--706. IEEE, 1996.

nayar1991 S. K. Nayar, K. Ikeuchi, and T. Kanade. Surface reflection: physical and geometrical
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence , 13(7):611--633,
1991.

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Bibliography"

This page was last modified on 8 February 2016, at 12:14.

Users Guide V7.2:Architecture of the simulation
From GATE collaborative documentation wiki

Table of Contents
Main rules

Verbosity and Visualization
Verbosity
Visualization

Geometry
The world
The system
The phantom

Digitizer
Physics
Sources
Data outputs

Standard outputs
Specific outputs

Experiments
Random generator
Example of a PET scanner

Main rules
GATE simulations are based on the execution of scripted commands (Users Guide V7.2:Getting started)
gathered in macros.

A simulation is generally divided into 7 steps (Fig. 9.1) as follows:

1. Verbosity and Visualization (Users Guide V7.2:Visualization)
2. Geometry (Users Guide V7.2:Defining a geometry)
3. Digitizer (Users Guide V7.2:Digitizer and readout parameters)
4. Physics (Users Guide V7.2:Setting up the physics)
5. Sources (Users_Guide_V7.2:Voxelized_Source_and_Phantom)
6. Outputs (Users Guide V7.2:Data output)
7. Experiment (Users Guide V7.2:Digitizer and readout parameters)

The first 4 steps correspond to the PreInit mode of GEANT4 whereas the last 3 occur after the initialization
of the simulation. The first 4 steps are validated by the GEANT4 command:

/gate/run/initialize

Once this phase is completed, the sources can be inserted in the setup and the simulation can be run.

Verbosity and Visualization

Verbosity

For each simulation module, one can set a verbosity level between 0 and 2. The higher the verbosity level,
the higher the level of information returned by GATE. By default, the verbosity level is set to 0, but if one
wants to follow in detail each step of the simulation, it can be set to higher values. As an example, to get the
computation time of the simulation written by Gate on the screen at the end of a simulation like this:

 User simulation time (sec) := 13.9
 Real simulation time (sec) := 15.92
 System simulation time (sec) := 0.03

the verbosity level of the output should be set to 2:

/gate/output/verbose 2

Visualization

There are several tools available for visualization OpenGL, VRML, DAWN. They can be activated as a
function of the visualization options selected at the GEANT4 configuration step. The on line visualization is
a useful tool when developing new geometries. It allows one to visually check the scanner geometry
(positions, physical volume overlaps, etc). Once the geometry is checked and one wants to run a complete
simulation, it is recommended to disable the on line visualization in order not to overload the CPU.

Geometry

The world

The first volume to be created is the world. Each new volume will be inserted in this one, with a given name,
and will be a daughter of the world. The world dimensions must be large enough to include the scanner and
the phantom.

The system

Next, the system type must be chosen, as a function of the scanner to be modelled: scanner, PETscanner,
cylindricalPET, ecat, CPET or SPECTHead. Each system has a defined number of levels with a specific
hierarchical organization (tree geometry) and it is linked with a specific data output format. Two outpout
formats are also available, independent of the selected system (ROOT and ASCII). Once the scanner is built,
all the scanner elements should be attached to the system.

The phantom

A phantom has to be defined, using materials included in the materials database. The phantom can be an
analytical or voxelized volume. Each voxel of the volume can be made of a specific material with its own
density.

Finally, the sensitive volumes crystalSD and phantomSD have to be attached. Only the interactions (hits)
occurring in a volume attached to a sensitive detector will be stored by GATE for the digitization.

Digitizer

The digitizer pre-processes the hits by sorting, regrouping and adding them to create singles. The singles are
time-stamped and stored in the events history. In PET, the coincidences are then sorted out as a function of
the coincidence window width. The detection parameters (temporal resolution, crystal blurring, dead time,
threshold, uphold...) are set at the digitizer level.

Physics

The physics part of the simulation defines the simulated physical processes by:

selecting the appropriate interactions library (Standard or Low Energy package),
enabling or disabling the physical processes (Photoelectric effect, Compton effect, Rayleigh, gamma
conversion...),
setting cutoffs in energy or range.

Sources

A source is defined by:

its nature (particle / ion),
its activity (initial activity, half live...),
its geometry (shape or voxelized),
its emission angle,
its movement if necessary.

The source activity can be confined in a specific volume (e.g the phantom volume).

Data outputs

The data output formats are of two types in GATE:

Standard outputs: ASCII, Root
System dependent outputs: LMF, sinogram, ecat7, Interfile

Standard outputs

ASCII outputs are spread out into 3 files (Hits, Singles, Coincidences). The Root output is composed of one
NTuple (Gate) and three TTrees (Hits, Singles, Coincidences) in which the interaction type, position and
time information are stored. By default these two types of output are enabled. Each one of these outputs can
be enabled or disabled according to the kind of information one is interested in.

Specific outputs

In addition to the two standards outputs, GATE provides system dependent outputs. The LMF output is
linked to the cylindricalPET system. The Sinogram and the ecat7 outputs are related to the ecat system,
while the Interfile output relates to the SPECTHead system.

All these outputs are characterized by several parameters which have to be correctly set up as explained in
Users Guide V7.2:Data output.

Experiments

The last step of the simulation consists in setting up the experiment. In this part, the duration of the
simulated acquisition is set by defining the beginning and the end of the simulation. The overall acquisition
time can be subdivided in several time slices of fixed duration. This feature is very useful in GATE, since the
geometry is updated only between two time slices. This provides the possibility to take into account the
movements of the sources or the detectors by subdividing a run in time slices during the geometry remains
unchanged.

Random generator
As a Monte Carlo tool, GATE needs a random generator. The CLHEP libraries provide various ones. Three
different random engines are currently available in GATE, the Ranlux64, the James Random and the
Mersenne Twister. The default one is the Mersenne Twister, but this can be changed easily using:

/gate/random/setEngineName aName

where aName can be: Ranlux64, JamesRandom, or MersenneTwister.

NB Several users have reported artifacts in PET data when using the Ranlux64 generator. These users have
said that the artifacts are not present in data generated with the Mersenne Twister generator.

The choice of the generator seed is also extremely important. There are 3 ways to make that choice:

The ’default’ option. In this case the default CLHEP internal seed is taken. This seed is always

the same.

The ’auto’ option. In this case, a new seed is automatically generated each time GATE is run.

To randomly generate the seed, the time in millisecond since January 1, 1970 and the process ID of the
GATE instance (i.e. the system ID of the running GATE process) are used. So each time GATE is run, a new
seed is used.

The ’manual’ option. In this case, the user can manually set the seed. The seed is an unsigned integer
value and it is recommended to be included in the interval [0,900000000].

The commands associated to the choice of the seed with the 3 different options are the following:

/gate/random/setEngineSeed default
/gate/random/setEngineSeed auto
/gate/random/setEngineSeed 123456789

It is also possible to control directly the initialization of the engine by selecting the file containing the seeds
with the command:

/gate/random/resetEngineFrom fileName

Finally, the level of verbosity of the random engine can be chosen. It consists into printing the random
engine status, depending on the type of generator used. The command associated to the verbosity is:

/gate/random/verbose 1

Values from 0 to 2 are allowed, higher values will be interpreted as 2. A value of 0 means no printing at all, a
value of 1 results in one printing at the beginning of the acquisition, and a value of 2 results in one printing
at each beginning of run.

Example of a PET scanner
The following example describes how to build a PET scanner based on the cylindricalPET system.

No verbosity
/control/verbose 0
#
OpenGL online visualization
/vis/open OGLSX
/vis/viewer/reset
/vis/viewer/set/style surface
/vis/drawVolume
/vis/scene/endOfEventAction accumulate
/vis/viewer/viewpointThetaPhi 30 30
/vis/viewer/zoom 2
#
/tracking/storeTrajectory 1
/gate/geometry/enableAutoUpdate

The on line visualization is enabled.

W O R L D
/gate/world/geometry/setXLength 40 cm
/gate/world/geometry/setYLength 40. cm
/gate/world/geometry/setZLength 40. cm

The world is created. Its dimensions should be large enough to contain all the volumes describing the
experiment.

C Y L I N D R I C A L
/gate/world/daughters/name cylindricalPET
/gate/world/daughters/insert cylinder
/gate/cylindricalPET/setMaterial Water
/gate/cylindricalPET/geometry/setRmax 152 mm
/gate/cylindricalPET/geometry/setRmin 130 mm
/gate/cylindricalPET/geometry/setHeight 80 mm
/gate/cylindricalPET/vis/forceWireframe

The system is chosen.

R S E C T O R
/gate/cylindricalPET/daughters/name box1
/gate/cylindricalPET/daughters/insert box
/gate/box1/placement/setTranslation 140 0 0 mm
/gate/box1/geometry/setXLength 20. mm
/gate/box1/geometry/setYLength 19. mm
/gate/box1/geometry/setZLength 76.6 mm
/gate/box1/setMaterial Water
/gate/box1/vis/forceWireframe
#
M O D U L E
/gate/box1/daughters/name box2
/gate/box1/daughters/insert box
/gate/box2/geometry/setXLength 20. mm
/gate/box2/geometry/setYLength 19. mm
/gate/box2/geometry/setZLength 19. mm
/gate/box2/setMaterial Water

/gate/box2/vis/forceWireframe
#
C R Y S T A L
/gate/box2/daughters/name box3
/gate/box2/daughters/insert box
/gate/box3/geometry/setXLength 20. mm
/gate/box3/geometry/setYLength 2.2 mm
/gate/box3/geometry/setZLength 2.2 mm
/gate/box3/setMaterial Water
/gate/box3/vis/forceWireframe
#
L A Y E R LSO
/gate/box3/daughters/name LSO
/gate/box3/daughters/insert box
/gate/LSO/geometry/setXLength 10. mm
/gate/LSO/geometry/setYLength 2.2 mm
/gate/LSO/geometry/setZLength 2.2 mm
/gate/LSO/placement/setTranslation -5 0 0 mm
/gate/LSO/setMaterial LSO
#
L A Y E R LuAP
/gate/box3/daughters/name LuAP
/gate/box3/daughters/insert box
/gate/LuAP/geometry/setXLength 10. mm
/gate/LuAP/geometry/setYLength 2. mm
/gate/LuAP/geometry/setZLength 2. mm
/gate/LuAP/placement/setTranslation 5 0 0 mm
/gate/LuAP/setMaterial LuAP
/gate/LuAP/vis/setColor cyan
#
R E P E A T C R Y S T A L
/gate/box3/repeaters/insert cubicArray
/gate/box3/cubicArray/setRepeatNumberX 1
/gate/box3/cubicArray/setRepeatNumberY 8
/gate/box3/cubicArray/setRepeatNumberZ 8
/gate/box3/cubicArray/setRepeatVector 10. 2.4 2.4 mm
#
R E P E A T M O D U L E
/gate/box2/repeaters/insert cubicArray
/gate/box2/cubicArray/setRepeatNumberZ 4
/gate/box2/cubicArray/setRepeatVector 0. 0. 19.2 mm
#
R E P E A T R S E C T O R
/gate/box1/repeaters/insert ring
/gate/box1/ring/setRepeatNumber 42
#
A T T A C H S Y S T E M
/gate/systems/cylindricalPET/rsector/attach box1
/gate/systems/cylindricalPET/module/attach box2
/gate/systems/cylindricalPET/crystal/attach box3
/gate/systems/cylindricalPET/layer0/attach LSO
/gate/systems/cylindricalPET/layer1/attach LuAP

The volumes of the scanner (with names given bu the user, e.g. box1) are connected to the cylindricalPET
system (to the predefined names of cylindricalPET system, e.g rsector).

A T T A C H L A Y E R SD
/gate/LSO/attachCrystalSD
/gate/LuAP/attachCrystalSD
#
P H A N T O M
/gate/world/daughters/name phantom
/gate/world/daughters/insert cylinder
/gate/phantom/geometry/setRmax 20 mm
/gate/phantom/geometry/setRmin 0. mm
/gate/phantom/geometry/setHeight 100. mm
/gate/phantom/placement/setTranslation 0 0 -40 mm
/gate/phantom/setMaterial Water
/gate/phantom/vis/setColor red
#
A T T A C H P H A N T O M S D

/gate/phantom/attachPhantomSD

The scanner system is completely built. It is composed of 42 rsectors, each one made of 8 x 8 LSO and
LuAP crystals assembled in phoswich.

M O V E M E N T S
/gate/cylindricalPET/moves/name revolution
/gate/cylindricalPET/moves/insert rotation
/gate/cylindricalPET/revolution/setAxis 0 0 1
/gate/cylindricalPET/revolution/setSpeed 6. deg/s
#
/gate/phantom/moves/name PhantomTranslation
/gate/phantom/moves/insert translation
/gate/phantom/PhantomTranslation/setSpeed 0. 0. 0.1 cm/s
#
The lines below are just to show how the system moves with time
/gate/timing/setTime 0. s
/gate/timing/setTime 5. s
/gate/timing/setTime 10. s
/gate/timing/setTime 15. s
/gate/timing/setTime 20. s
/gate/timing/setTime 25. s
/gate/timing/setTime 30. s
/gate/timing/setTime 35. s
/gate/timing/setTime 40. s
/gate/timing/setTime 45. s
/gate/timing/setTime 50. s
/gate/timing/setTime 55. s
/gate/timing/setTime 60. s

The scanner rotates along the Z axis with a rotation speed of 6 deg/s while the phantom has translation
movement with a speed of 0.1 cm/s.

D I G I T I Z E R
/gate/digitizer/convertor/verbose 0
/gate/digitizer/Singles/insert adder
/gate/digitizer/Singles/adder/verbose 0
#
ENERGY BLURRING
/gate/digitizer/Singles/insert crystalblurring
/gate/digitizer/Singles/crystalblurring/setCrystalResolutionMin 0.20
/gate/digitizer/Singles/crystalblurring/setCrystalResolutionMax 0.35
/gate/digitizer/Singles/crystalblurring/setCrystalQE 1.
/gate/digitizer/Singles/crystalblurring/setCrystalEnergyOfReference 511. keV
#
READOUT
/gate/digitizer/Singles/insert readout
/gate/digitizer/Singles/readout/setDepth 1
#
TEMPORAL RESOLUTION
/gate/digitizer/Singles/insert timeResolution
/gate/digitizer/Singles/timeResolution/setTimeResolution 2. ns
#
THRESHOLDER / UPHOLDER
/gate/digitizer/Singles/insert thresholder
/gate/digitizer/Singles/thresholder/setThreshold 250. keV
/gate/digitizer/Singles/insert upholder
/gate/digitizer/Singles/upholder/setUphold 750. keV
/gate/digitizer/Singles/thresholder/verbose 0
#
DEAD TIME
/gate/digitizer/Singles/insert deadtime
/gate/digitizer/Singles/deadtime/setDeadTime 250. ns
/gate/digitizer/Singles/deadtime/setMode paralysable
/gate/digitizer/Singles/deadtime/chooseDTVolume box1
#
COINCIDENCES SORTER
/gate/digitizer/Coincidences/setWindow 10. ns

/gate/digitizer/Coincidences/minSectorDifference 2
#
#
/gate/systems/cylindricalPET/describe

The digitizer is setup with a crystal blurring randomly chosen between a minimum and a maximum value. A
threshold and an uphold have been respectively set to 250~keV and to 750~keV. The coincidence time
window has been set to 10 ns and a coincidence event will be taken into acount only if the difference
between the two rsectors is greater than or equal to 2. A paralyzable dead-time of 250~ns has been
introduced at rsector level.

P H Y S I C S
/gate/physics/gamma/selectCompton lowenergy
/gate/physics/gamma/selectPhotoelectric lowenergy
/gate/physics/gamma/selectRayleigh lowenergy
#
INACTIVE COMPTON
#/gate/physics/gamma/selectCompton inactive
#
CUT X , DELTA AND ELECTRON
/gate/physics/setXRayCut 1 GeV
/gate/physics/setDeltaRayCut 1 GeV
/gate/physics/setElectronCut 1 km

At this point, the construction of the detector is over. We can now initialize the simulation.

I N I T I A L I Z E
/gate/systems/cylindricalPET/verbose 0
/gate/geometry/enableAutoUpdate
/gate/run/initialize

An important check can be made just after this initialization in order to test that there is no overlap between
volumes from the same "familly" (the mother volume and her daughters) and that a daughter volume is
inside her mother volume. This test is done only once in order to check the geometry.

/geometry/test/recursive_test
#
V E R B O S I T Y
/control/verbose 0
/grdm/verbose 0
/run/verbose 0
/event/verbose 0
/tracking/verbose 0
/gate/application/verbose 0
/gate/generator/verbose 0
/gate/stacking/verbose 0
/gate/event/verbose 0
/gate/source/verbose 0
#
S O U R C E S
/gate/source/addSource twogamma
/gate/source/twogamma/setActivity 1000. becquerel
/gate/source/twogamma/setType backtoback
/gate/source/twogamma/gps/particle gamma
/gate/source/twogamma/gps/energytype Mono
/gate/source/twogamma/gps/monoenergy 0.511 MeV
/gate/source/twogamma/gps/centre 0. 2. 0. cm
/gate/source/twogamma/gps/type Volume
/gate/source/twogamma/gps/shape Sphere
/gate/source/twogamma/gps/radius 0.5 cm
/gate/source/twogamma/gps/shape Cylinder
/gate/source/twogamma/gps/radius 10. mm
/gate/source/twogamma/gps/halfz 50. mmv
/gate/source/twogamma/gps/confine phantom

/gate/source/twogamma/gps/angtype iso
/gate/source/twogamma/gps/mintheta 0. deg
/gate/source/twogamma/gps/maxtheta 180. deg
/gate/source/twogamma/gps/minphi 0. deg
/gate/source/twogamma/gps/maxphi 360. deg
#
/gate/source/addSource sourceC11
/gate/source/sourceC11/setActivity 10000. becquerel
/gate/source/sourceC11/gps/particle e+
/gate/source/sourceC11/setForcedUnstableFlag true
/gate/source/sourceC11/setForcedHalfLife 1223 s
/gate/source/sourceC11/gps/energytype Carbon11
/gate/source/sourceC11/gps/centre 0. 0. 0. cm
/gate/source/sourceC11/gps/type Volume
/gate/source/sourceC11/gps/shape Cylinder
/gate/source/sourceC11/gps/radius 10. mm
/gate/source/sourceC11/gps/halfz 50. mm
/gate/source/sourceC11/gps/confine phantom
/gate/source/sourceC11/gps/angtype iso
#
/gate/source/list

We have defined two sources. The first one called twogamma has an activity of 1 kBq and emits two
gammas back to back in all directions. The second one, (sourceC11), emits beta+ according to the positron
energy spectrum of C11 decays, with an initial activity of 10~kBq and a halflife of 1223 s. The range of the
positron is simulated as well as the gamma − gamma acolinearity.

The two sources are confined in the phantom.

O U T P U T
ASCII
/gate/output/ascii/disable
/gate/output/ascii/setOutFileHitsFlag 0
/gate/output/ascii/setOutFileSinglesFlag 0
/gate/output/ascii/setOutFileCoincidencesFlag 0
#
ROOT
/gate/output/root/enable
/gate/output/root/setFileName root_output
/gate/output/root/setRootNtupleFlag 1
/gate/output/root/setRootHitFlag 0
/gate/output/root/setRootSinglesFlag 1
/gate/output/root/setRootCoincidencesFlag 1
/gate/output/root/setSaveRndmFlag 1
LMF
/gate/output/lmf/disable
#
S T A R T
/gate/application/setTimeSlice 1. s
/gate/application/setTimeStart 0. s
/gate/application/setTimeStop 60. s
/gate/application/startDAQ

The ASCII and LMF outputs are disabled and for the ROOT output,only Gate NTuple, Singles and
Coincidences TTrees are stored.

The acquisition duration will last 60 s with slices of 1 s. The geometry will thus be updated every second.

Important hint

You can define the complete simulation in one macro. In order to have a more modular simulation you can
divide it into several macros (e.g vis.mac, geometry.mac, digi.mac, physics.mac, sources.mac, main.mac)
called from a main macro.

Figure 9.1: GATE simulation architecture

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Architecture_of_the_simulation"

This page was last modified on 8 February 2016, at 12:29.

Figure 4.1: Picture of a phantom and a
cylindricalPET system composed of 5 rsectors, 4
modules (repeated along Z axis), 3 submodules

(repeated along Y axis), 64 crystals (8 x 8) and 2
layers (red and yellow)

Users Guide V7.2:Defining a system
From GATE collaborative documentation wiki

Table of Contents
Definition
Choice of the systeminition

Geometry constraints
Constraints related to the simulation of the DAQ electronics

How to connect the geometry to a system
Different types of systems

Scanner
CTscanner
CylindricalPET
CPET
Ecat
ecatAccel
OPET
SPECTHead
OpticalSystem

How to define a multi-system detector

Definition
A System is a key-concept of GATE. It provides a template of a predefined geometry to simulate a scanner. A system can be used to model
several scanners shating the same general geometrical characteristics. It can be considered as sort of a template described by key components
organized in a certain way, what is called a tree level structure, each component having its own specific role or ordering.

For instance, in the cylindricalPET scanner system, the geometrical volumes containing crystals are grouped in matrices, themselves assembled
in submodules and modules. At the top level of this structure, the sectors composed of modules are repeated on a cylindrical surface to build
up the whole device. Thus, a family of PET scanners obeying this structure can be described using this system, illustrated in figure 4.1,
composed of volumes called rsectors, modules, submodules, crystal and finaly (crystal) layer.

Different systems are available in GATE : scanner, SPECTHead, cylindricalPET, ecat, CPET, OPET and OpticalSystem, which can be used to
simulate most of the existing imaging devices.

Choice of the system
It is possible to use GATE without using a system, but in that case, no information
regarding particle interaction in the detector will be available. The reason is that the
volumes where the hits (interactions that occur inside the detector parts of the scanner, see
Users Guide V7.2:Digitizer and readout parameters) are recorded only for volumes
belonging to a defined system (those volumes are declared as crystalSD, SD for sensitive
detector, see Users Guide V7.2:Attaching the sensitive detectors). When the user is only
testing a scanner geometry, the use of a predefined system is not necessary. But if the user
wants to record information related to the particle history inside the detector, the geometry
has to be associated with a system. This section explains the elements and rules to
associate a geometry with a system.

Geometry constraints

Except for the general system scanner, one should first take into account the geometrical
shape of the different components (gantry, sector, bucket, etc.) and also the shape of the
crystal or the detector material (e.g.scintillators).

Each level has to be assigned to a physical volume of the geometry. A level volume has to
be fully enclosed in the upper level volume.

The number of levels has to be set and must conform to the specifications listed in table
4.1. The numbering of different sensitive volumes is completely set by the choice of the system and conforms to a specific output format.

The maximum number of components in each level depends on the output format since it can be limited by the number of bits used for the
numbering of the crystals. See Users Guide V7.2:Data output for further details.

Constraints related to the simulation of the DAQ electronics

Several points have to be considered when designing the simulation of the electronics cards. First, the whole readout electronic components
should be analyzed in order to define its main components. This concerns not only the single channel simulation, with effects like thresholder
response, but also the crosstalk between different channels including the electronic or the optical crosstalk among components in a same level.
For a PET scanner, the coincidence between two channels have to be simulated, based on the single component simulations. In GATE, it is
possible to introduce all these signal processing steps through the digitizer modules (see Users Guide V7.2:Digitizer and readout parameters),
operating at different levels or depths, as shown in Table 4.2. The depth value is used here to tag a group of similar components operating at a
certain level, which could be the scintillator block level (crystal with depth=5, or a group of crystal matrices with depth=1, depth values given
in these examples refer to the cylindricalPET system).

To simulate the electronic processing consistenly with the system used to model the detector, the following procedure should be used:

Regroup the detector electronic components in different levels.

List the signal processing to be used for rach of the resulting groups (see adder, readout, dead time in Users Guide V7.2:Digitizer and
readout parameters),

Combine the signals coming from different volumes with, for example, the readout module for the signals summation of a volume, or
the crosstalk and/or the coincidence between signals and coincidence.

NOTE : One or several crosstalk processing can be applied to components of different levels, for instance crosstalk between crystals, followed
by crosstalk between modules. Such processing involves components at the same level. For PET scanners, coincidences are validated by
testing the number difference in the uppermost level (as defined as depth = 1 in table). This test can reject accidental coincidence between
adjacent logic structures. When the user builds a geometry, this logic organisation should correspond to the fisrt level of a system to use this
coincidence sorting (see Users Guide V7.2:Digitizer and readout parameters).

How to connect the geometry to a system
The connection between the geometry and a system is performed in several steps:

The geometrical structure needs first to be defined, keeping in mind that it must fulfill some constraints, as described before.
The system geometry has then to be introduced, or attached, in the simulation process with the ``attach'' command and a specific
keyword argument corresponding to one level of the geometrical structure. The general macro line for this attachment is:

systems/SystemName/Level/attach UserVolumeName

where : SystemName is the specific name of the system (one of the entry in column 1), Level is the specific name of the level (see column 2),
UserVolumeName is the name the user gave to a volume, according to the conventions of Users Guide V7.2:Defining a geometry.

Finally, the specific output corresponding to the system has to be defined for further data analysis (see Users Guide V7.2:Data output).

System Components and Shape Available Outputs

scanner

level1
level2
level3
level4
level5

geometry not fixed Basic output: ASCII or ROOT, coincidences only
for PETscanner

CTscanner
module
cluster
pixel

box
box
box

Raw Data, ASCII, ROOT

CPET

sector
cassette
module
crystal
layer

cylinder
cylinder

box
box
box

Basic Output: ASCII, ROOT

cylindricalPET

rsector
module

submode
crystal

box
box
box
box

Basic Output: ASCII, ROOT and Raw. Specific:
LMF

Table 4.1: Different systems available in GATE and their characteristics. In the second column are listed some of the
keyword that are also used at in the macro (see also table 4.2 for a complete list). The shape in the third column

describe the mother volume, composed of “daughter” volumes as described in Chap. 3 : a box means a box shaped
mother volume containing an array of daughter boxes, a cylinder mother volumes will contains cylinders. Cylinders

are understood here as tube sectors defined by an inner and outer radius.

layer box

SPECThead crystal
pixel geometry not fixed

Basic Output: ASCII, ROOT and Raw. Specific:
PROJECTIONSET or INTEFILE, no

coincidences

ecat block
crystal box Basic Output: ASCII, ROOT and Raw. Specific:

SINOGRAM or ECAT7

ecatAccel block
crystal box Basic Output: AASCII, ROOT and Raw. Specific:

SINOGRAM or ECAT7

OPET

rsector
module

submode
crystal
layer

box
box
box
box

wedge

Basic Output: ASCII, ROOT and Raw. Specific:
LMF

OpticalSystem crystal
pixel geometry not fixed Basic Output: ROOT and Raw. Specific:

PROJECTIONSET

System Attach Keyword Argument Depth for readout segmentation

scanner

"level1"
"level2"
"level3"
"level4"
"level5"

1
2
3
4
5

CTscanner
"module"

"cluster_0...2"
"pixel_0...2"

1
2
3

cylindricalPET

"rsector"
"module"

"submodule"
"crystal"

"layer[i], i=0,3"

1
2
3
4
5

CPET

"sector"
"cassette"
"module"
"crystal"

"layer[i], i=0,3"

1
2
3
4
5

SPECThead "crystal"
"pixel"

1
2

ecat "block"
"crystal"

1
2

ecatAccel "block"
"crystal"

1
2

OPET

"rsector"
"module"

"submodule"
"crystal"

"layer[i], i=0,7"

1
2
3
4
5

OpticalSystem "crystal"
"pixel"

1
2

Table 4.2: Keywords corresponding to system components definition to be used with an “attach” command. At least
one level has to be attached to the system. If necessary, these level’s names can be possibly used as input to

digitizers modules: for example, different electronic dead times for each level’s electronics can be modelised. The
two last lines, listed here for information, are related to “hits” which apply only for “sensitive” volume. Please refer

to Chap. 5 for more details on this topic.

Different types of systems

Figure 4.2: Illustration of the scanner system. The different
volumes, in particular the sensitive ones, can be of any shape, here
cylindrical sector crystals, instead of boxes in other systems. The
scanner cylinder is drawn in magenta, whereas one of the sector

components : Level1, Level2, Level3, Level4 is shown in yellow,
blue, green, red, respectively. The “Detector” volumes of

cylindrical sector shapes are shown in plain red.

Scanner

Description

The scanner system is the most generic system in Gate. There is no geometrical constraints on the five different components.

Use

Different shapes of the volumes inside the tree level can be choosen, among those listed in table 3.2

Figure 4.4 illustrates the kind of detector that can be simulated with this system without any geometry constraint. On the other hand, there is
no specific output format associated with this system and information regarding the hits are only available in ROOT or ASCII format.

CTscanner

The CTscanner system allows you to simulate a simple CT scanner. It has three possible levels:

module component, that can be linearly repeated along the Y axis.
cluster component, repeated inside the module, allowing you to simulate many kind of pixels
pixel component, repeated inside the cluster. Raw data are the standard imageCT output to store the simulated CT projections and to
produce it at each time slice. The image type is a float matrix (32-bits) of dimension given by the product of the number of pixels in X
and Y, the content corresponds to the number of counts per pixel per acquisition (time slice).

Three types of simulations are proposed to the user:

Complete simulation: The modules, the clusters, and the pixels are user defined. All volumes are created by Geant4 and the
digitalization can be made at the pixel level (level 3).

Fast simulation: Only the module level is defined. Geant4 creates one volume corresponding to the CT module (only one block
possible) and the digitalization is made by the output module. The number of pixels per module are given through the output module
messenger. This mode is faster since only one Geant4 volume is simulated, but obviously, only a rather approximated scanner response
can be garanteed.

Complete simulation with a Variance Reduction Technique (VRT): In the same way as the complete simulation, the components
(pixels, clusters, and modules) are user defined. Unlike the complete simulation, using Geant4 in the detector, the user handles the
particle on the surface of the CT scanner. For more informations see the part below.

This variance reduction technique (VRT) has been developped with the aim to making the simulation time faster. Here are the successive steps
of the implementation:

Generation and Propagation of the particles through the World, then detection of those on the surface of the detector. The propagation
of the particles through the detector are 'killed', in order to handle ourself the detection and not by Geant4.
Computation of the mean free path (MFP) of the particle through the detector with the standard model (the compatibility with the low
energy model being not implemented yet)
Computation of the path of the particle in the detector:

PATH = MFP * − log(1 − R)
R being a distribution uniformly random number between 0 and 1

The user may perform this last step for each particle K times, in order to decrease the simulation time by avoiding a new generation and
propagation of the particle. However it has an influence on the variance of the output data. The following scheme shows the differences with a

simulation with a without VRT:

N: mean of the generated particles, and its standard deviation.
p: binomial probability of detection of the particle.
n = Np: mean of the number of detected particles, and its standard deviation.

The simulation time decreases linearly with K. But K , because of the reduction of the variance should be avoided. For deeper insight,
see the following table and graph.

The simulation corresponding to the table is:

A detector with 10,000 pixels (0.5x0.5x0.5 mm3) in Silicon (Si)
A monochromatic source (17.6 keV)
A time of exposition of 1 second

Use

example 1: complete CT simulation

##############
CT SCANNER
##############
/gate/world/daughters/name CTscanner
/gate/world/daughters/insert box
/gate/CTscanner/placement/setTranslation 0.00 0.00 100 mm
/gate/CTscanner/geometry/setXLength 100 mm
/gate/CTscanner/geometry/setYLength 100 mm
/gate/CTscanner/geometry/setZLength 0.5 mm
/gate/CTscanner/setMaterial Air
/gate/CTscanner/vis/forceWireframe
/gate/CTscanner/vis/setColor white

############# ############
CTSCANNER # ----> # MODULE
############# ############
/gate/CTscanner/daughters/name module
/gate/CTscanner/daughters/insert box
/gate/module/geometry/setXLength 100 mm
/gate/module/geometry/setYLength 100 mm
/gate/module/geometry/setZLength 0.5 mm
/gate/module/setMaterial Air
/gate/module/vis/forceWireframe
/gate/module/vis/setColor white

############ #############
MODULE # ----> # CLUSTER_0
############ #############
/gate/module/daughters/name cluster
/gate/module/daughters/insert box
/gate/cluster/geometry/setXLength 100 mm
/gate/cluster/geometry/setYLength 100 mm
/gate/cluster/geometry/setZLength 0.5 mm
/gate/cluster/setMaterial Air
/gate/cluster/vis/forceWireframe
/gate/cluster/vis/setColor white

############ ############# ###########
MODULE # ----> # CLUSTER_0 # ----> # PIXEL_0
############ ############# ###########
/gate/cluster/daughters/name pixel
/gate/cluster/daughters/insert box
/gate/pixel/geometry/setXLength 1 mm
/gate/pixel/geometry/setYLength 1 mm
/gate/pixel/geometry/setZLength 1 mm
/gate/pixel/setMaterial Silicon
/gate/pixel/vis/setColor red

REPEAT PIXEl_0
/gate/pixel/repeaters/insert cubicArray
/gate/pixel/cubicArray/setRepeatNumberX 100
/gate/pixel/cubicArray/setRepeatNumberY 100
/gate/pixel/cubicArray/setRepeatNumberZ 1
/gate/pixel/cubicArray/setRepeatVector 1 1 0.0 mm
/gate/pixel/cubicArray/autoCenter true

ATTACH SYSTEM
/gate/systems/CTscanner/module/attach module
/gate/systems/CTscanner/cluster_0/attach cluster
/gate/systems/CTscanner/pixel_0/attach pixel

ATTACH LAYER
/gate/pixel/attachCrystalSD

example 2: complete CT simulation with VRT
In the same way as the complete simulation, the difference is the output (K = 5)

/gate/output/imageCT/vrtFactor 5

Exemple 3 : Fast CT simulation

##############
CT SCANNER
##############
/gate/world/daughters/name CTscanner
/gate/world/daughters/insert box
/gate/CTscanner/placement/setTranslation 0.00 0.00 100 mm
/gate/CTscanner/geometry/setXLength 1.00 mm
/gate/CTscanner/geometry/setYLength 1.00 mm
/gate/CTscanner/geometry/setZLength 0.50 mm
/gate/CTscanner/setMaterial Air
/gate/CTscanner/vis/forceWireframe
/gate/CTscanner/vis/setColor white

############# ############
CTSCANNER # ----> # MODULE
############# ############
/gate/CTscanner/daughters/name module
/gate/CTscanner/daughters/insert box

/gate/module/geometry/setXLength 1. mm
/gate/module/geometry/setYLength 1. mm
/gate/module/geometry/setZLength 0.50 mm
/gate/module/setMaterial Air
/gate/module/vis/forceWireframe
/gate/module/vis/setColor white

############ #############
MODULE # ----> # CLUSTER_0
############ #############
/gate/module/daughters/name cluster
/gate/module/daughters/insert box
/gate/cluster/geometry/setXLength 1. mm
/gate/cluster/geometry/setYLength 1. mm
/gate/cluster/geometry/setZLength 0.50 mm
/gate/cluster/setMaterial Air
/gate/cluster/vis/forceWireframe
/gate/cluster/vis/setColor white

############ ############# ###########
MODULE # ----> # CLUSTER_0 # ----> # PIXEL_0
############ ############# ###########
/gate/cluster/daughters/name pixel
/gate/cluster/daughters/insert box
/gate/pixel/geometry/setXLength 1. mm
/gate/pixel/geometry/setYLength 1. mm
/gate/pixel/geometry/setZLength 0.5 mm
/gate/pixel/setMaterial Silicon
/gate/pixel/vis/setColor red

ATTACH SYSTEM
/gate/systems/CTscanner/module/attach module
/gate/systems/CTscanner/cluster_0/attach cluster
/gate/systems/CTscanner/pixel_0/attach pixel

ATTACH LAYER
/gate/pixel/attachCrystalSD

/gate/output/imageCT/numFastPixelX 100
/gate/output/imageCT/numFastPixelY 100
/gate/output/imageCT/numFastPixelZ 1

CylindricalPET

Description

CylindricalPET is a PET system that can describe most of the small animal PET scanners. The main specificity of cylindricalPET is the
possibility to record output data in the List Mode Format (LMF) developed by the Crystal Clear Collaboration. A complete description of LMF
is can be found in Users Guide V7.2:Data output#LMF output.

A CylindricalPET is based on a cylindrical geometry, and consists of 5 hierarchic levels, from mother to daughter, as defined below:

world cylindricalPET is defined as a cylinder in the world, with a non zero inner radius.
rsector (depth=1) is defined as a box, and repeated with a ring repeater in cylindricalPET.
module (depth=2) is a box inside rsector. It is repeated by a cubicarray repeater with no X repetition (repeatNumberX = 1). This level
is optional.
submodule(depth=3) is a box inside module. It is repeated by a cubicarray repeater with no X repetition (repeatNumberX = 1). This
level is optional.
crystal (depth=4) is a box inside submodule. It is repeated by a cubicarray repeater with no X repetition (repeatNumberX = 1).
layer (depth=5) is a (or several, in the case of a phoswich system) radially arranged box(es) inside crystal. A repeater should not be used
for layers, but the should be build them one by one in the macro. layer must be set as a sensible detector with the macro command:

/attachCrystalSD

The words in bold characters are dedicated. See also keywords in table 4.2.

Material of layer(s) must be the material of the detector, for instance LSO or BGO + GSO for a double layer phoswich system. Materials of
other levels (crystals, submodules, modules, rsectors, cylindricalPET) can be anything else.

IMPORTANT : Visualization should help you build this geometry with no overlap. GATE performs a test for detecting volume overlap, but
with a limited precision. This test is performed at the end of the initialization of Gate (see Users Guide V7.2:Getting started)

/run/initialize
/geometry/test/recursive_test

Users should carefully check that volumes are not bigger than the mother volume they are included in.

Use

An example of definition of a PET scanner following the CylindricalPET system structure is given below. The definition of the scanner should
be performed at the beginning of the macro, before initializations.

W O R L D
/gate/world/geometry/setXLength 40 cm
/gate/world/geometry/setYLength 40. cm
/gate/world/geometry/setZLength 40. cm

M O U S E
/gate/world/daughters/name mouse
/gate/world/daughters/insert cylinder
/gate/mouse/setMaterial Water
/gate/mouse/vis/setColor red
/gate/mouse/geometry/setRmax 18.5 mm
/gate/mouse/geometry/setRmin 0. mm
/gate/mouse/geometry/setHeight 68. mm

C Y L I N D R I C A L
/gate/world/daughters/name cylindricalPET
/gate/world/daughters/insert cylinder
/gate/cylindricalPET/setMaterial Water
/gate/cylindricalPET/geometry/setRmax 145 mm
/gate/cylindricalPET/geometry/setRmin 130 mm
/gate/cylindricalPET/geometry/setHeight 80 mm
/gate/cylindricalPET/vis/forceWireframe

R S E C T O R
/gate/cylindricalPET/daughters/name rsector
/gate/cylindricalPET/daughters/insert box
/gate/rsector/placement/setTranslation 135 0 0 mm
/gate/rsector/geometry/setXLength 10. mm
/gate/rsector/geometry/setYLength 19. mm
/gate/rsector/geometry/setZLength 76.6 mm
/gate/rsector/setMaterial Water
/gate/rsector/vis/forceWireframe

M O D U L E
/gate/rsector/daughters/name module
/gate/rsector/daughters/insert box
/gate/module/geometry/setXLength 10. mm
/gate/module/geometry/setYLength 19. mm
/gate/module/geometry/setZLength 19. mm
/gate/module/setMaterial Water
/gate/module/vis/forceWireframe
/gate/module/vis/setColor gray

C R Y S T A L
/gate/module/daughters/name crystal
/gate/module/daughters/insert box
/gate/crystal/geometry/setXLength 10. mm
/gate/crystal/geometry/setYLength 2.2 mm
/gate/crystal/geometry/setZLength 2.2 mm
/gate/crystal/setMaterial Water
/gate/crystal/vis/forceWireframe
/gate/crystal/vis/setColor magenta

L A Y E R
/gate/crystal/daughters/name LSO
/gate/crystal/daughters/insert box
/gate/LSO/geometry/setXLength 10. mm
/gate/LSO/geometry/setYLength 2.2 mm
/gate/LSO/geometry/setZLength 2.2 mm
/gate/LSO/placement/setTranslation 0 0 0 mm
/gate/LSO/setMaterial LSO
/gate/LSO/vis/setColor yellow

R E P E A T C R Y S T A L
/gate/crystal/repeaters/insert cubicArray
/gate/crystal/cubicArray/setRepeatNumberX 1
/gate/crystal/cubicArray/setRepeatNumberY 8
/gate/crystal/cubicArray/setRepeatNumberZ 8
/gate/crystal/cubicArray/setRepeatVector 10. 2.4 2.4 mm

R E P E A T M O D U L E
/gate/module/repeaters/insert cubicArray
/gate/module/cubicArray/setRepeatNumberZ 4
/gate/module/cubicArray/setRepeatVector 0. 0. 19.2 mm

R E P E A T R S E C T O R
/gate/rsector/repeaters/insert ring
/gate/rsector/ring/setRepeatNumber 42

A T T A C H S Y S T E M
/gate/systems/cylindricalPET/rsector/attach rsector
/gate/systems/cylindricalPET/module/attach module
/gate/systems/cylindricalPET/crystal/attach crystal
/gate/systems/cylindricalPET/layer0/attach LSO

A T T A C H L A Y E R SD
/gate/LSO/attachCrystalSD
/gate/mouse/attachPhantomSD

CPET

Figure 4.4: One NaI crystal with a curved shape

Figure 4.5: After the ring repeater, the scanner
consists of 6 NaI crystals

This system was defined for the simulation of a CPET-like scanner (C-PET Plus, Philips Medical Systems, the Netherlands), with one ring of
NaI crystal with a curved shape. For this scanner, a single level in addition to the system level is enough to describe the volume hierarchy.

Description

This system has the particularity to have cylindrical shaped sector components, based on the cylinder shape (see figure 4.3 and Users Guide
V7.2:Defining a geometry for definitions), whereas these components are generally boxes in other systems.

Figure: 4.3: Definition of a CPET
sector volume. This system allows

one to define sectors with a
cylindrical shape instead of sectors
with a box shape,like in other PET

systems

Use

Described below is an example of code appropriate for modeling a one ring scanner of NaI
crystal with a curved shape.

BASE = CPET SYSTEM
/gate/world/daughters/name CPET
/gate/world/daughters/insert cylinder
/gate/CPET/setMaterial Air
/gate/CPET/geometry/setRmax 60 cm
/gate/CPET/geometry/setRmin 0.0 cm
/gate/CPET/geometry/setHeight 35.0 cm
/gate/CPET/vis/forceWireframe

FIRST LEVEL = CRYSTAL
/gate/CPET/daughters/name crystal
/gate/CPET/daughters/insert cylinder
/gate/crystal/geometry/setRmax 47.5 cm
/gate/crystal/geometry/setRmin 45.0 cm
/gate/crystal/geometry/setHeight 25.6 cm
/gate/crystal/geometry/setPhiStart 0 deg
/gate/crystal/geometry/setDeltaPhi 60 deg

REPEAT THE CURVE SECTOR INTO THE WHOLE RING
/gate/crystal/repeaters/insert ring
/gate/crystal/ring/setRepeatNumber 6

CRYSTAL VOLUME IS MADE OF NAI
/gate/crystal/setMaterial NaI
/gate/crystal/vis/setColor green

The object crystal is then attached to its corresponding component in the CPET system (level
1 : the sector level for CPET system - see previous section for details).

/gate/systems/CPET/sector/attach crystal

The crystals are set as sensitive detectors (see Users Guide V7.2:Attaching the sensitive
detectors#The crystalSD).

/gate/crystal/attachCrystalSD

The digitizer part (see Users Guide V7.2:Digitizer and readout parameters#Digitizer modules)
is made of the adder module and some blurring module (see Users Guide V7.2:Digitizer and
readout parameters).

Ecat

Description

The ecat system is a simplified version of cylindricalPET and was named ecat because it is appropriate for modelling PET scanners from the
ECAT family, from CPS Innovations (Knoxville, TN, U.S.A.). Such scanners are based on the block detector principle, consisting in an array
of crystals, typically 8 x 8 read by few photomultipliers, typically 4. The blocks are organized along an annular geometry to yield multi-ring
detectors.

An example of macro with an ecat definition is provided in:

$GATEHOME/example_PET_Scanner/PET_Ecat_System.mac

The ecat system has only three hierarchical levels: one is for the entire detector (base), one for the block (block), and one for the crystals
within the block (crystal).

In addition to the standard output modules (ASCII and root), two additional output modules are specifically associated to the ecat system, and
correspond to sinogram formats. These are the sinogram and the ecat7 output modules and are discussed in Users Guide V7.2:Data
output#Sinogram output and Users Guide V7.2:Data output#Ecat7 output.

Use

Described below is an example of code for modeling a four block-ring scanner.

It has to be named after the selected system (ecat here) and is defined as a volume daughter of the world. It has a ring shape and should include
all detectors (see Figure 4.6).

/gate/world/daughters/name ecat
/gate/world/daughters/insert cylinder
/gate/ecat/setMaterial Air
/gate/ecat/geometry/setRmax 442.0 mm
/gate/ecat/geometry/setRmin 412.0 mm
/gate/ecat/geometry/setHeight 155.2 mm
/gate/ecat/setTranslation 0.0 0.0 0.0 mm

Figure 4.6: Definition of the base

Figure 4.7: Definition of the block

The following commands set the size and the position of the first block within the base ecat. It is a rectangular parallelepiped and should
include all crystals within a block. For a multiple block-ring system centered axially on the base ecat, the axial position of this first block
should be set to zero (see Figure 4.7).

/gate/ecat/daughters/name block
/gate/ecat/daughters/insert box
/gate/block/placement/setTranslation 427.0 0.0 0.0 mm
/gate/block/geometry/setXLength 30.0 mm
/gate/block/geometry/setYLength 35.8 mm
/gate/block/geometry/setZLength 38.7 mm
/gate/block/setMaterial Air

Figure 4.8: Definition of the crystal

The next commands set the size and the position of the first crystal within the block. For a crystal array centered on the block, the position of
this first crystal should be at the center of the block (see Figure 4.8).

/gate/block/daughters/name crystal
/gate/block/daughters/insert box
/gate/crystal/placement/setTranslation 0.0 0.0 0.0 mm
/gate/crystal/geometry/setXLength 30.0 mm
/gate/crystal/geometry/setYLength 4.4 mm
/gate/crystal/geometry/setZLength 4.75 mm
/gate/crystal/setMaterial BGO

Finally, the crystal array is described. The sampling of the crystals within a block is defined, together with the size and the sampling of the
crystal array within one block. The crystal array is centered on the position of the original crystal.

/gate/crystal/repeaters/insert cubicArray
/gate/crystal/cubicArray/setRepeatNumberX 1
/gate/crystal/cubicArray/setRepeatNumberY 8
/gate/crystal/cubicArray/setRepeatNumberZ 8
/gate/crystal/cubicArray/setRepeatVector 0. 4.45 4.80 mm

To create the full scanner, the rings have then to be defined. The following commands set the number of blocks per block-ring and the number
of block-rings. Multiple block-ring systems will be centered axially on the axial position of the original block.

/gate/block/repeaters/insert linear
/gate/block/linear/setRepeatNumber 4
/gate/block/linear/setRepeatVector 0. 0. 38.8 mm
/gate/block/repeaters/insert ring
/gate/block/ring/setRepeatNumber 72

This description results in a 4 block-ring scanner, i.e. a 32 crystal-ring scanner, with 576 crystals per crystal-ring.

Command lines are then used to attach the objects block and crystal to their corresponding components in the ecat system.

systems/ecat/block/attach block
systems/ecat/crystal/attach crystal

To detect events, the crystals are finally set as sensitive detectors (see Users Guide V7.2:Attaching the sensitive detectors#The crystalSD).

/gate/crystal/attachCrystalSD

The digitizer part (see Users Guide V7.2:Digitizer and readout parameters#Digitizer modules) can be the same as for the cylindricalPET
system.

ecatAccel

Description

The ecatAccel system was introduced to model a new PET scanner family ECAT ACCEL (from CPS Innovations, Knoxville, TN, U.S.A.).
The ecatAccel system differs from the ecat system by its geometrical shape : the detection blocks are arranged along a spherical ring whereas
they are arranged along annular rings for the ecat system. As data processing and output format are highly dependent on the scanner geometry,
it was necessary to introduce a new system even though it has many common features with the ecat system. The same hierarchical levels (base,
block and crystal) as for the ecat system are used to describe the geometry of the ecatAccel system, and the same standard output modules
(ASCII and root) and specific outputs (sinogram and ecat7) are also available. Please refer to [Users Guide V7.2:Data output#Sinogram
output]] and Users Guide V7.2:Data output#Ecat7 output for further information on sinogram and ecat7 outputs for the ecatAccel system.

Use

Described below is an example of code for modeling the ACCEL PET scanner of the BIOGRAPH-LSO (SIEMENS - CTI) PET-CT scanner.

The scanner is named after the selected system (ecatAccel here) and is defined as a volume daughter of the world. As for the ecat system, it has
a ring shape and should include all detectors (see Figure 4.6). For the BIOGRAPH, it can be described as follows:

The base is described:

/gate/world/daughters/name ecatAccel
/gate/world/daughters/insert cylinder
/gate/ecatAccel/setMaterial Air
/gate/ecatAccel/geometry/setRmax 437.0 mm
/gate/ecatAccel/geometry/setRmin 412.0 mm
/gate/ecatAccel/geometry/setHeight 162. mm
/gate/ecatAccel/setTranslation 0.0 0.0 0.0 mm

The block is then described: the size and the position of the first block are set within the base ecatAccel. As for the ecat system, it is a
rectangular parallelepiped and should include all crystals within a block. For a multiple block-ring system centered axially on the base
ecatAccel, the axial position of this first block should be set to zero.

/gate/ecatAccel/daughters/name block
/gate/ecatAccel/daughters/insert box
/gate/block/geometry/setXLength 51.6 mm
/gate/block/geometry/setYLength 25.0 mm
/gate/block/geometry/setZLength 51.6 mm
/gate/block/setMaterial Air

The crystal geometry and settings are then specified. The following commands set the size and the position of the first crystal within the block.
For a crystal array centered on the block, the position of this first crystal should be at the center of the block.

/gate/block/daughters/name crystal
/gate/block/daughters/insert box
/gate/crystal/placement/setTranslation 0.0 0.0 0.0 mm
/gate/crystal/geometry/setXLength 6.45 mm
/gate/crystal/geometry/setYLength 25.0 mm
/gate/crystal/geometry/setZLength 6.45 mm
/gate/crystal/setMaterial LSO

Then the crystal array is described within a block. The crystal array will be centered on the position of the original crystal.

/gate/crystal/repeaters/insert cubicArray
/gate/crystal/cubicArray/setRepeatNumberX 8
/gate/crystal/cubicArray/setRepeatNumberY 1
/gate/crystal/cubicArray/setRepeatNumberZ 8
/gate/crystal/cubicArray/setRepeatVector 6.45 0.0 6.45 mm

Finally, the different rings of the scanner are described. The number of blocks per block-ring (command setRepeatNumberWithTheta) is
indicated as well as the number of block-rings (command setRepeatNumberWithPhi). The angle between two adjacent blocks in a block-ring
is set with the command setThetaAngle and the angle between two adjacent blocks belonging to two neighbouring rings in the axial direction
is set with the command setPhiAngle. Multiple block-ring will be centered axially on the axial position of the original block.

/gate/block/repeaters/insert sphere
/gate/block/sphere/setRadius 424.5 mm
/gate/block/sphere/setRepeatNumberWithTheta 3ionSource
/gate/block/sphere/setRepeatNumberWithPhi 48
/gate/block/setThetaAngle 7.5 deg
/gate/block/setPhiAngle 7.5 deg

This description results in a 3 block-ring scanner, i.e. a 24 crystal-ring scanner, with 384 crystals per crystal-ring.

The objects block and crystal are attached to their corresponding components in the ecatAccel system:

/gate/systems/ecatAccel/block/attach block
/gate/systems/ecatAccel/crystal/attach crystal

The sensitive detector is set to the crystals as for the ecat system and the digitizer part remains the same as for the cylindricalPET system.

OPET

Description

The OPET system was introduced to model a new PET prototype.

Use

Described below is an example of code for modeling the OPET PET scanner.

R S E C T O R (Create a box to put the crystals in: one PMT)
/gate/OPET/daughters/name rsector
/gate/OPET/daughters/insert box
/gate/rsector/placement/setTranslation 20.4955 0 0 mm
/gate/rsector/geometry/setXLength 10 mm
/gate/rsector/geometry/setYLength 17.765 mm
/gate/rsector/geometry/setZLength 17.765 mm
/gate/rsector/setMaterial Air
/gate/rsector/vis/setVisible False
/gate/rsector/vis/forceWireframe
/gate/rsector/vis/setColor yellow

M O D U L E (Make a box for one row of 8 crystals)
/gate/rsector/daughters/name module
/gate/rsector/daughters/insert box
/gate/module/geometry/setXLength 10 mm
/gate/module/geometry/setYLength 17.765 mm
/gate/module/geometry/setZLength 2.162 mm
/gate/module/setMaterial Air
/gate/module/vis/setVisible False
/gate/module/vis/forceWireframe
/gate/module/vis/setColor black

Daughter crystal inside mother crystal
/gate/module/daughters/name crystal0
/gate/module/daughters/insert box
/gate/crystal0/geometry/setXLength 10 mm
/gate/crystal0/geometry/setYLength 2.1620 mm
/gate/crystal0/geometry/setZLength 2.1620 mm
/gate/crystal0/placement/setTranslation 0. -7.8015 0. mm
/gate/crystal0/setMaterial Air
/gate/crystal0/vis/setColor black
/gate/crystal0/vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal0/daughters/name LSO0
/gate/crystal0/daughters/insert wedge
/gate/LSO0/geometry/setXLength 10 mm
/gate/LSO0/geometry/setNarrowerXLength 8.921 mm
/gate/LSO0/geometry/setYLength 2.1620 mm
/gate/LSO0/geometry/setZLength 2.1620 mm
/gate/LSO0/placement/setRotationAxis 0 1 0
/gate/LSO0/placement/setRotationAngle 180 deg
/gate/LSO0/placement/setTranslation 0.2698 0. 0. mm
/gate/LSO0/setMaterial BGO
/gate/LSO0/vis/setColor yellow

Daughter crystal inside mom crystal
/gate/module/daughters/name crystal1
/gate/module/daughters/insert box
/gate/crystal1/geometry/setXLength 10 mm
/gate/crystal1/geometry/setYLength 2.1620 mm
/gate/crystal1/geometry/setZLength 2.1620 mm
/gate/crystal1/placement/setTranslation 0. -5.5725 0. mm
/gate/crystal1/setMaterial Air
/gate/crystal1/vis/setColor magenta
/gate/crystal1/vis/forceWireframe
/gate/crystal1/vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal1/daughters/name LSO1
/gate/crystal1/daughters/insert wedge
/gate/LSO1/geometry/setXLength 8.921 mm
/gate/LSO1/geometry/setNarrowerXLength 8.193 mm
/gate/LSO1/geometry/setYLength 2.1620 mm
/gate/LSO1/geometry/setZLength 2.1620 mm
/gate/LSO1/placement/setRotationAxis 0 1 0
/gate/LSO1/placement/setRotationAngle 180 deg
/gate/LSO1/placement/setTranslation 0.7215 0. 0. mm
/gate/LSO1/setMaterial BGO
/gate/LSO1/vis/setColor red

Daughter crystal inside mom crystal
/gate/module/daughters/name crystal2
/gate/module/daughters/insert box
/gate/crystal2/geometry/setXLength 10 mm
/gate/crystal2/geometry/setYLength 2.1620 mm
/gate/crystal2/geometry/setZLength 2.1620 mm
/gate/crystal2/placement/setTranslation 0. -3.3435 0. mm
/gate/crystal2/setMaterial Air
/gate/crystal2/vis/setColor black
/gate/crystal2/vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal2/daughters/name LSO2
/gate/crystal2/daughters/insert wedge
/gate/LSO2/geometry/setXLength 8.193 mm
/gate/LSO2/geometry/setNarrowerXLength 7.773 mm
/gate/LSO2/geometry/setYLength 2.1620 mm

/gate/LSO2/geometry/setZLength 2.1620 mm
/gate/LSO2/placement/setRotationAxis 0 1 0
/gate/LSO2/placement/setRotationAngle 180 deg
/gate/LSO2/placement/setTranslation 1.0085 0. 0. mm
/gate/LSO2/setMaterial BGO
/gate/LSO2/vis/setColor green

Daughter crystal inside mom crystal
/gate/module/daughters/name crystal3
/gate/module/daughters/insert box
/gate/crystal3/geometry/setXLength 10 mm
/gate/crystal3/geometry/setYLength 2.1620 mm
/gate/crystal3/geometry/setZLength 2.1620 mm
/gate/crystal3/placement/setTranslation 0. -1.1145 0. mm
/gate/crystal3/setMaterial Air #
/gate/crystal3/vis/forceWireframe
/gate/crystal3/vis/setColor black
/gate/crystal3/vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal3/daughters/name LSO3
/gate/crystal3/daughters/insert wedge
/gate/LSO3/geometry/setXLength 7.773 mm
/gate/LSO3/geometry/setNarrowerXLength 7.637 mm
/gate/LSO3/geometry/setYLength 2.1620 mm
/gate/LSO3/geometry/setZLength 2.1620 mm
/gate/LSO3/placement/setRotationAxis 0 1 0
/gate/LSO3/placement/setRotationAngle 180 deg
/gate/LSO3/placement/setTranslation 1.1475 0. 0. mm
/gate/LSO3/setMaterial BGO
/gate/LSO3/vis/setColor blue

Daughter crystal inside mom crystal
/gate/module/daughters/name /gate/crystal4/
/gate/module/daughters/insert box
/gate/crystal4//geometry/setXLength 10 mm
/gate/crystal4//geometry/setYLength 2.1620 mm
/gate/crystal4//geometry/setZLength 2.1620 mm
/gate/crystal4//placement/setTranslation 0. 1.1145 0. mm
/gate/crystal4//setMaterial Air
/gate/crystal4//vis/setColor black
/gate/crystal4//vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal4//daughters/name /gate/LSO4
/gate/crystal4//daughters/insert wedge
/gate/LSO4/geometry/setXLength 7.773 mm
/gate/LSO4/geometry/setNarrowerXLength 7.637 mm
/gate/LSO4/geometry/setYLength 2.1620 mm
/gate/LSO4/geometry/setZLength 2.1620 mm
/gate/LSO4/placement/setRotationAxis 0 0 1
/gate/LSO4/placement/setRotationAngle 180 deg
/gate/LSO4/placement/setTranslation 1.1475 0. 0. mm
/gate/LSO4/setMaterial BGO
/gate/LSO4/vis/setColor blue

Daughter crystal1 inside mom crystal
/gate/module/daughters/name crystal5
/gate/module/daughters/insert box
/gate/crystal5/geometry/setXLength 10 mm
/gate/crystal5/geometry/setYLength 2.1620 mm
/gate/crystal5/geometry/setZLength 2.1620 mm
/gate/crystal5/placement/setTranslation 0. 3.3435 0. mm
/gate/crystal5/setMaterial Air
/gate/crystal5/vis/setColor black
/gate/crystal5/vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal5/daughters/name LSO5
/gate/crystal5/daughters/insert wedge
/gate/LSO5/geometry/setXLength 8.193 mm
/gate/LSO5/geometry/setNarrowerXLength 7.773 mm
/gate/LSO5/geometry/setYLength 2.1620 mm
/gate/LSO5/geometry/setZLength 2.1620 mm
/gate/LSO5/placement/setRotationAxis 0 0 1
/gate/LSO5/placement/setRotationAngle 180 deg
/gate/LSO5/placement/setTranslation 1.0085 0. 0. mm
/gate/LSO5/setMaterial BGO
/gate/LSO5/vis/setColor green

Daughter crystal1 inside mom crystal
/gate/module/daughters/name /gate/crystal6
/gate/module/daughters/insert box
/gate/crystal6/geometry/setXLength 10 mm
/gate/crystal6/geometry/setYLength 2.1620 mm
/gate/crystal6/geometry/setZLength 2.1620 mm
/gate/crystal6/placement/setTranslation 0. 5.5725 0. mm
/gate/crystal6/setMaterial Air
/gate/crystal6/vis/forceWireframe
/gate/crystal6/vis/setColor black
/gate/crystal6/vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal6/daughters/name /gate/LSO6
/gate/crystal6/daughters/insert wedge
/gate/LSO6/geometry/setXLength 8.921 mm
/gate/LSO6/geometry/setNarrowerXLength 8.193 mm
/gate/LSO6/geometry/setYLength 2.1620 mm

/gate/LSO6/geometry/setZLength 2.1620 mm
/gate/LSO6/placement/setRotationAxis 0 0 1
/gate/LSO6/placement/setRotationAngle 180 deg
/gate/LSO6/placement/setTranslation 0.7215 0. 0. mm
/gate/LSO6/setMaterial BGO
/gate/LSO6/vis/setColor red

Daughter crystal1 inside mom crystal
/gate/module/daughters/name /gate/crystal7
/gate/module/daughters/insert box
/gate/crystal7/geometry/setXLength 10 mm
/gate/crystal7/geometry/setYLength 2.1620 mm
/gate/crystal7/geometry/setZLength 2.1620 mm
/gate/crystal7/placement/setTranslation 0. 7.8015 0. mm
/gate/crystal7/setMaterial Air
/gate/crystal7/vis/forceWireframe
/gate/crystal7/vis/setColor black
/gate/crystal7/vis/setVisible false

L A Y E R (Put the LSO in the small box)
/gate/crystal7/daughters/name /gate/LSO7
/gate/crystal7/daughters/insert wedge
/gate/LSO7/geometry/setXLength 10 mm
/gate/LSO7/geometry/setNarrowerXLength 9.07 mm
/gate/LSO7/geometry/setYLength 2.1620 mm
/gate/LSO7/geometry/setZLength 2.1620 mm
/gate/LSO7/placement/setTranslation 0.2698 0. 0. mm
/gate/LSO7/placement/setRotationAxis 0 0 1
/gate/LSO7/placement/setRotationAngle 180 deg
/gate/LSO7/setMaterial BGO
/gate/LSO7/vis/setColor yellow

Repeat 8 time the level2 to get 8 rings (Z direction)
/gate/module/repeaters/insert linear
/gate/module/linear/setRepeatNumber 8
/gate/module/linear/setRepeatVector 0. 0. 2.2275 mm

/gate/rsector/repeaters/insert ring
/gate/rsector/ring/setRepeatNumber 6

/gate/OPET/placement/setRotationAxis 0 0 1 #
/gate/OPET/placement/setRotationAngle 30 deg

A T T A C H S Y S T E M
/gate/systems/OPET/rsector/attach rsector
/gate/systems/OPET/module/attach module
/gate/systems/OPET/layer0/attach LSO0
/gate/systems/OPET/layer1/attach LSO1
/gate/systems/OPET/layer2/attach LSO2
/gate/systems/OPET/layer3/attach LSO3
/gate/systems/OPET/layer4/attach /gate/LSO4
/gate/systems/OPET/layer5/attach LSO5
/gate/systems/OPET/layer6/attach /gate/LSO6
/gate/systems/OPET/layer7/attach /gate/LSO7

#A T T A C H L A Y E R SD : definition of your sensitive detector
/gate/LSO0/attachCrystalSD
/gate/LSO1/attachCrystalSD
/gate/LSO2/attachCrystalSD
/gate/LSO3/attachCrystalSD
/gate/LSO4/attachCrystalSD
/gate/LSO5/attachCrystalSD
/gate/LSO6/attachCrystalSD
/gate/LSO7/attachCrystalSD

Figure 4.9 shows the final OPET scanner.

Figure 4.9: The OPET scanner

SPECTHead

Description

SPECTHead is a SPECT system appropriate to model SPECT dedicated scanners within GATE. The main reason for specifying SPECThead is
that it can be coupled to the InterFile output which is discussed in Users Guide V7.2:Data output#Interfile output of projection set. An example
macro defining a typical SPECT scanner can be found in:

$GATEHOME/exampleSPECT_Scanners/Interfile.mac

wherein the specific Interfile output module is called.

A SPECThead system is a box-shaped geometry element and consists of three hierarchic levels:

base which is always attached to the volume SPECThead, which is a dedicated word.
crystal which is coupled to the main detector block.
pixel which can be used for modeling a pixelated detector.

If a uniform detector block is being used, then the crystal material should be that of the detector. If the detector is pixelated, then the pixel
material definition should correspond to the detector material, while the crystal material can be anything non-specific.

Use

Below is part of the SPECT benchmark macro, which is distributed with the GATE software, and which involves the SPECTHead system.

World
Define the world dimensions
/gate/world/ dimensions
/gate/world/geometry/setXLength 100 cm
/gate/world/geometry/setYLength 100 cm
/gate/world/geometry/setZLength 100 cm

SPECThead is the name of the predefined SPECT system

Figure 4.10: Example of a hypothetical four-headed SPECThead
system. The detectors are not pixelated in this example

Create the SPECT system, which will yield
an Interfile output of the projection data
/gate/world/daughters/name /gate/SPECThead
/gate/world/daughters/insert box

Define the dimensions
/gate/SPECThead/geometry/setXLength 7. cm
/gate/SPECThead/geometry/setYLength 21. cm
/gate/SPECThead/geometry/setZLength 30. cm

Define the position
/gate/SPECThead/placement/setTranslation 20.0 0. 0. cm

Set the material associated with the main volume
/gate/SPECThead/setMaterial Air

Replicate the head (around the Z axis by default)
to get a hypothetical four-headed system
/gate/SPECThead/repeaters/insert ring
/gate/SPECThead/ring/setRepeatNumber 4
/gate/SPECThead/ring/setAngularPitch 90. deg

Define the rotation speed of the head
Define the orbiting around the Z axis
/gate/SPECThead/moves/insert orbiting
/gate/SPECThead/orbiting/setSpeed 0.15 deg/s
/gate/SPECThead/orbiting/setPoint1 0 0 0 cm
/gate/SPECThead/orbiting/setPoint2 0 0 1 cm

Define visualisation options
/gate/SPECThead/vis/forceWireframe

Collimator
Create a full volume defining the shape of
the collimator (typical for SPECT)
/gate/SPECThead/daughters/name /gate/collimator
/gate/SPECThead/daughters/insert box

Define the dimensions of the collimator volume
/gate/collimator/geometry/setXLength 3. cm
/gate/collimator/geometry/setYLength 19. cm
/gate/collimator/geometry/setZLength 28. cm

Define the position of the collimator volume
/gate/collimator/placement/setTranslation -2. 0. 0. cm

Set the material of the collimator volume
/gate/collimator/setMaterial Lead

Define some visualisation options
/gate/collimator/vis/setColor red
/gate/collimator/vis/forceWireframe

Insert the first hole of air in the collimator
/gate/collimator/daughters/name /gate/hole
/gate/collimator/daughters/insert hexagone
/gate/hole/geometry/setHeight 3. cm
/gate/hole/geometry/setRadius .15 cm
/gate/hole/placement/setRotationAxis 0 1 0
/gate/hole/placement/setRotationAngle 90 deg
/gate/hole/setMaterial Air

Repeat the hole in an array
/gate/hole/repeaters/insert cubicArray

/gate/hole/cubicArray/setRepeatNumberX 1
/gate/hole/cubicArray/setRepeatNumberY 52
/gate/hole/cubicArray/setRepeatNumberZ 44
/gate/hole/cubicArray/setRepeatVector 0. 0.36 0.624 cm

Repeat linearly these holes
/gate/hole/repeaters/insert linear
/gate/hole/linear/setRepeatNumber 2
/gate/hole/linear/setRepeatVector 0. 0.18 0.312 cm
/gate/hole/attachPhantomSD

Crystal
Create the crystal volume
/gate/SPECThead/daughters/name crystal
/gate/SPECThead/daughters/insert box

Define the dimensions of the crystal volume
/gate/crystal/geometry/setXLength 1. cm
/gate/crystal/geometry/setYLength 19. cm
/gate/crystal/geometry/setZLength 28. cm

Define the position of the crystal volume
/gate/crystal/placement/setTranslation 0. 0. 0. cm

Set the material associated with the crystal volume
/gate/crystal/setMaterial NaI
/gate/crystal/attachCrystalSD

The SPECThead system is made of three levels: base (for the head),
#crystal (for the crystal and crystal matrix) and pixel
#(for individual crystals for pixelated gamma camera)

/gate/systems/SPECThead/crystal/attach crystal

Look at the system
/gate/systems/SPECThead/describe

Modelling the collimator

SPECT systems need collimator. A parameterized collimator setup was developed for both parallel hole collimators and fan beam collimators.
It is based on the GEANT4 replica system in which a single volume represents multiple copies of a volume (the air holes) within its mother
volume (the collimator itself). SPECT collimator geometries are built using this approach in less than a second.

Example of code for modelling fanbeam collimators:

/gate/SPECThead/daughters/name fanbeam
/gate/SPECThead/daughters/insert collimator

#set the material for the collimator
/gate/fanbeam/setMaterial Lead #define the X and Y size of the collimator
/gate/fanbeam/geometry/setDimensionY 53.5 cm
/gate/fanbeam/geometry/setDimensionX 25.0 cm

#specify the focal length
/gate/fanbeam/geometry/setFocalDistanceY 0.0 cm
/gate/fanbeam/geometry/setFocalDistanceX 35.0 cm

#specify the thickness of the collimator
/gate/fanbeam/geometry/setHeight 5.8 cm

#set the septal thickness to the required distance between the holes
/gate/fanbeam/geometry/setSeptalThickness 0.8 cm

#specify the hole radius
/gate/fanbeam/geometry/setInnerRadius 1.70 cm
/gate/fanbeam/placement/setRotationAxis 0 0 1
/gate/fanbeam/placement/setRotationAngle -90 deg
/gate/fanbeam/vis/setColor blue
/gate/fanbeam/vis/forceWireframe

Example for parallel hole collimators:

/gate/SPECThead/daughters/name colli

#specify that the parallel beam collimator setup must be used
/gate/SPECThead/daughters/insert parallelbeam

#set the collimator material
/gate/colli/setMaterialName Lead

#set the collimator dimensions
/gate/colli/geometry/setDimensionX 70 cm
/gate/colli/geometry/setDimensionY 80 cm

#set the thickness of the collimator
/gate/colli/geometry/setHeight 3 cm

#specify the hole radius
/gate/colli/geometry/setInnerRadius 0.5 cm

Figure 4.11: Example of a
hypothetical OpticalImaging

pixelated system. A pixelated camera
is simulated in red. The additional
volume in yellow could represent

some electronic board.

#set the septal thickness to the required distance between the holes
/gate/colli/geometry/setSeptalThickness 0.2 cm
/gate/colli/placement/alignToX
/gate/colli/placement/setRotationAxis 0 0 1
/gate/colli/placement/setRotationAngle -90 deg

Septal Penetration

If one wants to record, for every photon detected, how many times they crossed the collimator septa, the command recordSeptalPenetration
must be turned on (default value is false) and the septal volume name must be attached to a PhantomSD:

/gate/output/analysis/recordSeptalPenetration true
/gate/output/analysis/setSeptalVolumeName collimator

If the septal volume name does not exist, the simulation is aborted.

OpticalSystem

Description

OpticalSystem is appropriate to model Optical Imaging within GATE. An example macro defining a typical Optical Imaging system can be
found in:

$GATEHOME/example_OPTICAL/Optical_System.mac

An OpticalSystem is a box-shaped geometry element and consists of three hierarchic levels:

base which is always attached to the volume OpticalSystem.
crystal which is coupled to the main detector block.
pixel which can be used for modeling a pixelated detector.

Use

Below is part of the Optical Imaging benchmark macro, which is distributed with the GATE software.

World
Define the world dimensions
/gate/world/geometry/setXLength 100. cm
/gate/world/geometry/setYLength 100. cm
/gate/world/geometry/setZLength 100. cm
/gate/world/setMaterial Air

Create the Optical Imaging system, which will yield
a binary output of the projection data
/gate/world/daughters/name OpticalSystem
/gate/world/daughters/insert box

Define the dimensions, position and material
/gate/OpticalSystem/geometry/setXLength 10.5 cm
/gate/OpticalSystem/geometry/setYLength 10.5 cm
/gate/OpticalSystem/geometry/setZLength 2.0 cm
/gate/OpticalSystem/placement/setTranslation 0 0 0 cm
/gate/OpticalSystem/setMaterial Air

Define pixelated detector:
/gate/OpticalSystem/daughters/name crystal
/gate/OpticalSystem/daughters/insert box
/gate/crystal/geometry/setXLength 10.5 cm
/gate/crystal/geometry/setYLength 10.5 cm
/gate/crystal/geometry/setZLength 1.0 cm
/gate/crystal/placement/setTranslation 0 0 -0.5 cm
/gate/crystal/setMaterial Air
/gate/crystal/vis/forceWireframe 1
/gate/systems/OpticalSystem/crystal/attach crystal

/gate/crystal/daughters/name pixel
/gate/crystal/daughters/insert box
/gate/pixel/geometry/setXLength 2.0 cm
/gate/pixel/geometry/setYLength 2.0 cm
/gate/pixel/geometry/setZLength 1.0 cm
/gate/pixel/setMaterial Air
/gate/pixel/placement/setTranslation 0 0 0 cm
/gate/pixel/vis/setColor red
/gate/pixel/repeaters/insert cubicArray
/gate/pixel/cubicArray/setRepeatNumberX 5
/gate/pixel/cubicArray/setRepeatNumberY 5
/gate/pixel/cubicArray/setRepeatNumberZ 1
/gate/pixel/cubicArray/setRepeatVector 2.1 2.1 0 cm
/gate/pixel/vis/forceSolid
/gate/pixel/attachCrystalSD
/gate/systems/OpticalSystem/pixel/attach pixel

Define an additional volume behind the pixels
/gate/OpticalSystem/daughters/name Electronics
/gate/OpticalSystem/daughters/insert box
/gate/Electronics/geometry/setXLength 10.5 cm
/gate/Electronics/geometry/setYLength 10.5 cm
/gate/Electronics/geometry/setZLength 1.0 cm
/gate/Electronics/setMaterial Air
/gate/Electronics/placement/setTranslation 0 0 0.5 cm
/gate/Electronics/vis/setColor yellow
/gate/Electronics/vis/forceSolid

How to define a multi-system detector
To simulate a multi-system device consisting of several detectors (PET,SPECT,CT,..) you need to add in your macro special commands as
explained below. This will allow you to simultaneously register Hits inside every detector.

Defining the systems:

The standard definition of a GATE system is done according to the command:

/gate/world/daughters/name SystemName

Where SystemName must be one of available system names in GATE (see table 4.1). Unfortunately, defining a system with this command
prevent you to insert more than one system of the same type. Another method has been inserted in GATE to define more than one system at a
time. Using this more general method, users can simulate several systems simultaneously. A system is now defined by its own name and its
type according to the next two command lines:

/gate/world/daughters/name AnyName
/gate/world/daughters/systemType SystemType

Where AnyName can be any name as for any Geant4 volume name and SystemType must be one the names of GATE systems mentioned in
table 4.1.

How to connect the geometry to the systems:

By using more than one system, we have to change the attachment commands to connect the geometrical elements of every system with its
defined components, to do that we use the next command:

/gate/systems/SystemName/Level/attach UserVolumeName

This command has the same form as for one system, but the essential difference is that SystemName here can be any name gave by the user to
the system.

Example of multi-system:

An example for the creation of three systems, one system of type “cylindricalPET” and two systems of type “scanner” is explained below.
Note that it is not necessary to use the “ systemType” command for cylindricalPET system because there is only one system of this type.

W O R L D
/gate/world/geometry/setXLength 40. cm
/gate/world/geometry/setYLength 40. cm
/gate/world/geometry/setZLength 60. cm

M O U S E
/gate/world/daughters/name mouse
/gate/world/daughters/insert cylinder
/gate/mouse/setMaterial Water
/gate/mouse/vis/setColor red
/gate/mouse/geometry/setRmax 18.5 mm
/gate/mouse/geometry/setRmin 0. mm
/gate/mouse/geometry/setHeight 68. mm

SYSTEM 1: cylindricalPET
/gate/world/daughters/name cylindricalPET # standard definition
/gate/world/daughters/insert cylinder
/gate/cylindricalPET/setMaterial Water
/gate/cylindricalPET/geometry/setRmax 145 mm
/gate/cylindricalPET/geometry/setRmin 130 mm
/gate/cylindricalPET/geometry/setHeight 80 mm
/gate/cylindricalPET/vis/forceWireframe

#cylindricalPET => rsector
/gate/cylindricalPET/daughters/name rsector
/gate/cylindricalPET/daughters/insert box

/gate/rsector/placement/setTranslation 135 0 0 mm
/gate/rsector/geometry/setXLength 10. mm
/gate/rsector/geometry/setYLength 19. mm
/gate/rsector/geometry/setZLength 76.6 mm
/gate/rsector/setMaterial Water
/gate/rsector/vis/forceWireframe

#cylindricalPET => module
/gate/rsector/daughters/name module
/gate/rsector/daughters/insert box
/gate/module/geometry/setXLength 10. mm
/gate/module/geometry/setYLength 19. mm
/gate/module/geometry/setZLength 19. mm
/gate/module/setMaterial Water
/gate/module/vis/forceWireframe
/gate/module/vis/setColor gray

#cylindricalPET => crystal
/gate/module/daughters/name crystal
/gate/module/daughters/insert box
/gate/crystal/geometry/setXLength 10. mm
/gate/crystal/geometry/setYLength 2.2 mm
/gate/crystal/geometry/setZLength 2.2 mm
/gate/crystal/setMaterial Water
/gate/crystal/vis/forceWireframe
/gate/crystal/vis/setColor magenta

#cylindricalPET => LSO
/gate/crystal/daughters/name LSO
/gate/crystal/daughters/insert box
/gate/LSO/geometry/setXLength 10. mm
/gate/LSO/geometry/setYLength 2.2 mm
/gate/LSO/geometry/setZLength 2.2 mm
/gate/LSO/placement/setTranslation 0 0 0 mm
/gate/LSO/setMaterial LSO
/gate/LSO/vis/setColor yellow

R E P E A T C R Y S T A L
/gate/crystal/repeaters/insert cubicArray
/gate/crystal/cubicArray/setRepeatNumberX 1
/gate/crystal/cubicArray/setRepeatNumberY 8
/gate/crystal/cubicArray/setRepeatNumberZ 8
/gate/crystal/cubicArray/setRepeatVector 10. 2.4 2.4 mm

R E P E A T M O D U L E
/gate/module/repeaters/insert cubicArray
/gate/module/cubicArray/setRepeatNumberZ 4
/gate/module/cubicArray/setRepeatVector 0. 0. 19.2 mm

R E P E A T R S E C T O R
/gate/rsector/repeaters/insert ring
/gate/rsector/ring/setRepeatNumber 42

SYSTEM 2: Scanner_1
/gate/world/daughters/name Scanner_1 # System name definition for scanner 1
/gate/world/daughters/systemType scanner # System type definition for scanner 1
/gate/world/daughters/insert box
/gate/Scanner_1/setMaterial Air
/gate/Scanner_1/geometry/setXLength 20 cm
/gate/Scanner_1/geometry/setYLength 20 cm
/gate/Scanner_1/geometry/setZLength 10 cm
/gate/Scanner_1/placement/setTranslation 0 0 -18 cm
/gate/Scanner_1/vis/forceWireframe
/gate/Scanner_1/vis/setVisible 1

Scanner_1 => Cryostat_1
/gate/Scanner_1/daughters/name Cryostat_1
/gate/Scanner_1/daughters/insert box
/gate/Cryostat_1/placement/setTranslation 0 0 0 cm
/gate/Cryostat_1/geometry/setXLength 19 cm
/gate/Cryostat_1/geometry/setYLength 19 cm
/gate/Cryostat_1/geometry/setZLength 9 cm
/gate/Cryostat_1/setMaterial Stainless
/gate/Cryostat_1/vis/setColor yellow
/gate/Cryostat_1/vis/forceWireframe

Scanner_1 => ActiveZone_1
/gate/Cryostat_1/daughters/name ActiveZone_1
/gate/Cryostat_1/daughters/insert box
/gate/ActiveZone_1/placement/setTranslation 0 0 0 cm
/gate/ActiveZone_1/geometry/setXLength 18 cm
/gate/ActiveZone_1/geometry/setYLength 18 cm
/gate/ActiveZone_1/geometry/setZLength 8 cm
/gate/ActiveZone_1/setMaterial LXenon
/gate/ActiveZone_1/vis/setColor white

SYSTEM 3: Scanner_2
/gate/world/daughters/name Scanner_2 # System name definition for scanner 2
/gate/world/daughters/systemType scanner # System Type definition for scanner 2

/gate/world/daughters/insert box
/gate/Scanner_2/setMaterial Air
/gate/Scanner_2/geometry/setXLength 20 cm
/gate/Scanner_2/geometry/setYLength 20 cm
/gate/Scanner_2/geometry/setZLength 10 cm
/gate/Scanner_2/placement/setTranslation 0 0 18 cm

/gate/Scanner_2/vis/forceWireframe
/gate/Scanner_2/vis/setVisible 1

Scanner_2 => Cryostat_2
/gate/Scanner_2/daughters/name Cryostat_2
/gate/Scanner_2/daughters/insert box
/gate/Cryostat_2/placement/setTranslation 0 0 0 cm
/gate/Cryostat_2/geometry/setXLength 19 cm
/gate/Cryostat_2/geometry/setYLength 19 cm
/gate/Cryostat_2/geometry/setZLength 9 cm
/gate/Cryostat_2/setMaterial Stainless
/gate/Cryostat_2/vis/setColor yellow
/gate/Cryostat_2/vis/forceWireframe

Scanner_2 => ActiveZone_2
/gate/Cryostat_2/daughters/name ActiveZone_2
/gate/Cryostat_2/daughters/insert box
/gate/ActiveZone_2/placement/setTranslation 0 0 0 cm
/gate/ActiveZone_2/geometry/setXLength 18 cm
/gate/ActiveZone_2/geometry/setYLength 18 cm
/gate/ActiveZone_2/geometry/setZLength 8 cm
/gate/ActiveZone_2/setMaterial LXenon
/gate/ActiveZone_2/vis/setColor white

A T T A C H S Y S T E M S
/gate/systems/cylindricalPET/rsector/attach rsector
/gate/systems/cylindricalPET/module/attach module
/gate/systems/cylindricalPET/crystal/attach crystal
/gate/systems/cylindricalPET/layer0/attach LSO

New attachment commands
/gate/systems/Scanner_1/level1/attach Cryostat_1
/gate/systems/Scanner_1/level2/attach ActiveZone_1

/gate/systems/Scanner_2/level1/attach Cryostat_2
/gate/systems/Scanner_2/level2/attach ActiveZone_2

A T T A C H L A Y E R SD
/gate/LSO/attachCrystalSD
/gate/mouse/attachPhantomSD

/gate/ActiveZone_1/attachCrystalSD

/gate/ActiveZone_2/attachCrystalSD

Notes:

a) The command “systemType” is optional in case of using only one system, but the system name must be one GATE systems (first column in
table 4.1) as for standard definition

b) Same remark, in the case where all systems have different types.

c) In general, one has to use the “systemType” command only for simulating more than one system of the same type.

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Defining_a_system"

This page was last modified on 8 February 2016, at 12:42.

Users Guide V7.2:Attaching the sensitive detectors
From GATE collaborative documentation wiki

Table of Contents
General purpose
The two types of sensitive detector

The crystalSD
The phantomSD

General purpose
Once a model has been defined for the scanner through the construction of a system (see Users Guide
V7.2:Defining a system), the next step is to attach a sensitive detector (SD) to some volumes of the
geometry. As in any Geant4 simulation, these sensitive detectors are used to store information regarding
interactions of a particle in the matter (hits) using information from the steps occuring along the particle
track. A hit is a snapshot of a physical interaction of a track in a sensitive region of the detector. Figure 6.1
illustrates these notions. Hits contain various pieces of information associated to a step object, such as the
energy deposition of a step, geometrical information, position and time of a step, etc.

Figure 5.1: Particle interactions in a sensitive detector

It is essential to remember that GATE records and stores information related to the hits only for those
volumes that are attached to a sensitive detector. All information regarding the interactions occuring in non-
sensitive volumes is lost.

Two sensitive detectors are defined in GATE:

The crystalSD is used to record information regarding interactions inside the volumes belonging to a
scanner for instance (crystals or collimators).
The phantomSD is used to record information regarding Compton and Rayleigh interactions taking
place in the volumes before the detection in the scanner system (e.g., for a SPECT camera, these
volumes can be the table, phantom, and collimator, in which it can be relevant to retrieve information
about Compton and Rayleigh interactions).

A complete definition of the simulation context normally involves performing the two sorts of attachments:
some volumes are attached to the phantomSD, while others are attached to the crystalSD.

The two types of sensitive detector

The crystalSD

Definition and use

The crystalSD may be used to record information regarding interactions taking place inside some volumes
of the scanner: energy deposition, positions of interaction, origin of the particle (emission vertex), type of
interaction (name of the physical processes involved), etc.

Attachment of the crystalSD

A crystalSD can be attached only to those volumes that belong to a given system. Once a crystalSD has been
attached, it is considered as attached to this system. This sensitive detector can be attached using the
command attachCrystalSD. These volumes are essentially meant to be scintillating elements (crystals) but
can also be attached to non-scintillating elements such as collimators, shields or septa.

Below is an example of command lines that should be included in a macro using the crystalSD. These
command lines must be inserted after the description of the attachment to the system:

The first command is used to attach the scintillation crystal to the detection levelcrystal of the SPECThead
system.

A T T A C H S Y S T E M
/systems/SPECThead/crystal/attach crystal

Then, the second command attaches the crystalSD to the volume representing the scintillation crystal in the
geometry.

A T T A C H S E N S I T I V E D E T E C T O R
/gate/crystal/attachCrystalSD

The phantomSD

Definition and use

The phantomSD plays a crucial role in GATE simulations, as it is used to detect and tally Compton and
Rayleigh interactions taking place in the scanner FOV. These data can then be used to estimate whether a

photon reaching a detector is a direct or a Compton-scattered photon. Thus, in PET, the phantomSD is
currently the only way to discriminate scattered from true coincidences. To simulate low energy X-ray
acquisitions (for example mammography acquisitions from 7 to 28 keV), information concerning Rayleigh
interactions is significant.

Using this type of sensitive detector, it is possible to retrieve two pieces of information relating to the hits:

The number of Compton and Rayleigh interactions occuring in all the volumes attached to the
phantomSD: this is stored in the data output variables nPhantomCompton and nPhantomRayleigh.
These pieces of information are also available for the crystalSD with the variables nCrystalCompton
and nCrystalRayleigh.
The last volume attached to the phantomSD in which a Compton or a Rayleigh interaction occured:
the data output variables including these volume names are compVolName and RayleighVolName.

Attachment of the phantomSD

One first needs to define a dummy, air-filled volume covering the whole field-of-view of the scanner.
Then, all the source volumes should be offsprings (direct or indirect) of this volume.
Last, all these volumes (FOV and sources) should be attached to the phantomSD using the command
attachPhantomSD.

IMPORTANT: To retrieve data output information regarding hits occuring in the phantomSD
(nPhantomCompton and compVolName), a crystalSD has to be defined in the simulation. Otherwise, data
output variables will be created but will be empty. When all these conditions are satisfied, any interaction
taking place within the FOV of the scanner is automatically recorded by the phantomSD, so that the number
of Compton interactions for each photon can be accurately computed.

This procedure does not take into account Compton interactions taking place within the detectors, so that
inter-crystal cross-talk via Compton interactions is not detected. Here is an example of command-lines that
should be included within the macro in order to use the phantomSD. These command lines must be inserted
after the description of the attachment to the system. First, commands are used to attach the scattering
volumes to the detection level base of the SPECThead system:

A T T A C H S Y S T E M
/systems/SPECThead/base/attach FOV
/systems/SPECThead/base/attach head
/systems/SPECThead/base/attach body

Then, commands attach the phantomSD to the volumes representing the scattering volumes in the geometry:

A T T A C H S E N S I T I V E D E T E C T O R
/FOV/attachPhantomSD
/head/attachPhantomSD
/body/attachPhantomSD

Finally, the last commands are used to attach the scintillation crystal to the detection level crystal of the
SPECThead system and to attach the crystalSD to the volume representing the scintillation crystal in the
geometry.

ATTACH SYSTEM AND SENSITIVE DETECTOR CRYSTALSD IN ORDER TO RETRIEVE DATA OUTPUTS ON PHANTOMSD
/systems/SPECThead/crystal/attachCrystalSD
/gate/crystal/attachCrystalSD

IMPORTANT:

It is impossible to attach two sensitive detectors to the same volume. Thus, to count also the Compton
interactions occuring in the scintillating crystal, the variable nCrystalCompton has been created: its role is
similar to that of the variable nPhantomCompton, e.g it stores the number of Compton interactions in the
scintillating crystal.

In the case of a voxellized matrix: Previous commands to attach sensitive detectors are used for the
volumes created using the geometry commands of GATE (see Users Guide V7.2:Defining a geometry). In
order to record the same information concerning the interactions occuring in a voxellized matrix, see Users
Guide V7.2:Voxelized_Source_and_Phantom.

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Attaching_the_sensitive_detectors"

This page was last modified on 8 February 2016, at 12:43.

Users Guide V7.2:Digitizer and readout
parameters
From GATE collaborative documentation wiki

Table of Contents
General Purpose

From particle detection to coincidences in GATE
Role of the digitizer
Disabling the digitizer

Digitizer modules
Distributions
Adder
Adder Compton
Readout
Energy blurring
Crystal blurring for a block detector
Local energy blurring for a detector module with several types of crystals
Intrinsic resolution blurring with crystals of different compositions
Calibration
Crosstalk
Thresholder & Upholder
Energy windows
Sigmoidal thresholder
Time resolution
Spatial blurring for SPECT
Spatial blurring for PET
Noise
Local efficiency
Memory buffers and bandwidth
Pile-up
Dead time
Spatial

Coincidence sorter
Delayed coincidences
Multiple coincidences

Multiple coincidence sorters
Coincidence processing and filtering

Coincidence pulse processors
Coincidence dead time
Coincidence buffers
Multiple coincidence removal

Example of a digitizer setting
Digitizer optimization
Angular Response Functions (ARFs) to speed-up single photon (planar and SPECT) simulations
Multi-system approaches: how to use more than one system in one simuation set-up ?

General Purpose

The purpose of the digitizer module is to simulate the behavior of the scanner detectors and signal
processing chain. In this section, the algorithms used to simulate a scanner electronic readout scheme are
described. In the case of PET, an overview of the main steps used to produce coincidences from the
simulated particle information is briefly described. A more detailed explanation of how to control the
behavior of each of these steps is given. Finally, a complete example of a readout macro file is presented.

From particle detection to coincidences in GATE

GATE uses Geant4 to generate particles and transport them through the different materials. This mimics the
physical interactions between particles and matter. The information generated during this process is used by
GATE to simulate the detector pulses (digits), which correspond to the observed data. The digitizer
represents the series of steps and filters that make up this process.

The typical data-flow for an event is as follows:

A particle is generated, with its parameters, such as initial type, time, momentum, and energy.
An elementary trajectory step (referred to in Geant4 simply as a step) is applied. A step corresponds to
the trajectory of a particle between discrete interactions (i.e. photoelectric, Compton, pair production,
etc). During a step the changes to particle's energy and momentum are calculated. The length of a step
depends upon the nature of interaction, the type of particle and material, etc. The calculation of step
length is complex and is mentioned here only briefly. For more details, please refer to the Geant4
documentation.
If a step occurs within a volume corresponding to a sensitive detector, the interaction information
between the particle and the material is stored. For example, this information may include the
deposited energy, the momentum before and after the interaction, the name of the volume where the
interaction occurred, and so on. This set of information is referred to as a Hit.
Steps 2 and 3 are repeated until the energy of the particle becomes lower than a predefined value, or
the particle position goes outside the predefined limits. The entire series of steps form a simulated
trajectory of a particle, that is called a Track in Geant4.
The amount of energy deposited in a crystal is filtered by the digitizer module. The output from the
digitizer corresponds to the signal after it has been processed by the Front End Electronics (FEE).
Generally, the FEE is made of several processing units, working in a serial and/or in parallel. This
process of transforming the energy of a Hit into the final digital value is called Digitization, and is
performed by the digitizer portion of the GATE architecture. Each processing unit in the FEE is
represented in GATE by a corresponding digitizer module. The final value obtained after filtering by a
set of these modules is called a Single. Singles can be saved as output. Each transient value, between
two modules, is called a Pulse.

This process is repeated for each event in the simulation in order to produce one or more sets of Singles.
These Singles can be stored into an output file (as a ROOT tree, for example).

Once this list is created, a second processing stage can be inserted to sort the Singles list for coincidences in
case of PET systems. To do this, the algorithm searches in this list for a set of Singles that are detected
within a given time interval (the so called 'coincident events').

Finally, the coincidence data may be filtered-out to mimic any possible data loss which could occur in the
coincidence logical circuit or during the data transportation. As for the singles, the processing is performed
by specifying a list of generic modules to apply to the coincidence data flow.

Definition of a hit in Geant4

A hit is a snapshot of the physical interaction of a track within a sensitive region of a detector. The
information given by a hit is

Position and time of the step
Momentum and energy of the track
Energy deposition of the step
Interaction type of the hit
Volume name containing the hit

As a result, the history of a particle is saved as a series of hits generated along the particles trajectory. In
addition to the physical hits, Geant4 saves a special hit. This hit takes place when a particle moves from one
volume to another (this type of hit deposits zero energy). The hit data represents the basic information that a
user has with which to construct the physically observable behavior of a scanner. To see the information
stored in a hit, see the file GateCrystalHit.hh.

Role of the digitizer

As mentioned above, the information contained in the hit does not correspond to what is provided by a real
detector. To simulate the digital values (pulses) that result from the output of the Front End Electronics, the
sampling methods of the signal must be specified. To do this, a number of digitizer modules are available
and are described below. Moreover, in the case of PET analysis, the trigger logic is based on one or more
decisions defined by the user that depend upon physically observable quantities such as energy thresholds
and coincidence times.

The role of the digitizer is to build, from the hit information, the physical observables, which include energy,
position, and time of detection for each particle. In addition, the digitizer must implement the required logic
to simulate coincidences during PET simulations. Typical usage of digitizer module includes the following
actions:

simulate detector response
simulate readout scheme
simulate trigger logic

These actions are accomplished by inserting digitizer modules into GATE, as explained in the next sections.

Disabling the digitizer

If for any reason you want to disable the digitizer process and all output (that are already disabled by
default), you can use the 2 following commands:

/gate/output/analysis/disable
/gate/output/digi/disable

Digitizer modules
The digitization consists of a series of signal processors. The output at each step along the series is defined
as a pulse. At the end of the chain, the output pulses are named singles. These Singles realistically simulate
the physical observables of a detector response to a particle interacting with it. An example is shown in
figure 8.1.

Figure 8.1: The digitizer is organized as a chain of modules that begins with the hit and ends with the single which represents the physical
observable seen from the detector.

To specify a new signal-processing module i.e. add a new processing unit in the readout scheme, the
following command template should be used:

/gate/digitizer/insert MODULE

where MODULE is the name of the digitizer module. The order of the module declaration should make
sense. The data flow follows the same order as the module declaration in the macro. In a typical scanner, the
following sequence works well, athough it is not mandatory (the module names will be explained in the rest
of the section):

insert adder before readout
insert readout before thresholder/upholder
insert blurring before thresholder/upholder

The available modules are explained in the following sections.

Distributions

Definition

Since many of the modules presented below have to deal with functions or probability density, a generic tool
is provided to describe such mathematical objects in GATE. Basically, a distribution in GATE is defined by
its name, its type (Gaussian, Exponential, etc...) and the parameters specifics to each distribution type (such
as the mean and the standard deviation of a Gaussian function). Depending on the context, these objects are
used directly as functions, or as probability densities into which a variable is randomly chosen. In the
following, the generic term of distribution will be used to describe both of these objects, since their
declaration is unified under this term into GATE.

Five types of distribution are available in GATE, namely:

Flat distributions, defined by the range into which the function is not null, and the value taken within
this range.
Gaussian distributions, defined by a mean value and a standard deviation.
Exponential distributions, defined by its power.
Manual distributions, defined by a discrete set of points specified in the GATE macro file. The data are
linearly interpolated to define the function in a continuous range.
File distribution, acting as the manual distribution, but where the points are defined in a separate
ASCII file, whose name is given as a parameter. This method is appropriate for large numbers of

points and allows to describe any distribution in a totally generic way.

Usage

A distribution is declared by specifying its name then by creating a new instance, with its type name:

/gate/distributions/name my_distrib
/gate/distributions/insert Gaussian

The possible type name available corresponds to the five distributions described above, that is Flat,
Gaussian, Exponential, Manual or File.

Once the distribution is created, the related parameters can be set:

/gate/distributions/my_distrib/setMean 350 keV
/gate/distributions/my_distrib/setSigma 30 keV

for this example of a Gaussian distribution. All the parameters, for each type of distribution, are summarized
in table 8.1

Table: 8.1: Summary of the parameters for each distribution type
Parameter name Description

FLAT DISTRIBUTION
setMin set the low edge of the range where the function is not null (default is 0)
SetMax set the high edge of the range where the function is not null (default is 1)
setAmplitude set the value taken by the function within the non null range (default is 1)

GAUSSIAN DISTRIBUTION
setMean set the mean value of the distribution (default is 0)
setSigma set the standard deviation of the distribution (default is 1).
setAmplitude set the amplitude of the distribution (default is 1).

EXPONENTIAL DISTRIBUTION
setLambda set the power of the distribution (default is 1).
setAmplitude set the amplitude of the distribution (default is 1).

MANUAL DISTRIBUTION
setUnitX set the unit for the x axis.
setUnitY set the unit for the y axis.
insertPoint insert a new point, giving a pair of (x,y) values.
addPoint add a new point, giving its y value, and auto incrementing the x value.
autoXstart in case of auto incremental x value, set the first x value to use.

FILE DISTRIBUTION
setUnitX set the unit for the x axis.
setUnitY set the unit for the y axis.
autoX specify if the x values are read from file or if they are auto-incremented.
autoXstart in case of auto incremental x value, set the first x value to use.

setFileName the name of the ASCII file where the data have to be read.
setColumnX which column of the ASCII file contains the x axis data.
setColumnY which column of the ASCII file contains the y axis data.
read do read the file (should be called after specifying all the other parameters).

Adder

Definition

One particle often creates multiple interactions, and consequently multiple hits, within a given crystal. For
instance, a photon may interact with a single crystal by two Compton scattering events and a photoelectric
absorption. The first step of the digitizer is to sum all the hits that occur within the same crystal (i.e. the
same volume). This is due to the fact that the electronics always measure an integrated signal, and do not
have the time or energy resolution necessary to distinguish between the individual interactions of the particle
within a crystal. This digitizer action is completed by a module called the adder. Generally, the adder should
be the first module of a digitizer chain.

The adder acts on the lowest level in the system hierarchy, as explained in Users Guide V7.2:Defining a
system. As a result:

A registered system must be used to describe the geometry (also the mother volume name must
corresponds to a registered system name),

The lowest level of this system must be attached to the detector volume and must be declared as a
sensitive detector.

The adder regroups hits per volume into a pulse. If one particle that enters a detector makes multiple hits
within two different crystal volumes before being stopped, the output of the adder module will consists of
two pulses. Each pulse is computed as follows: the energy is taken to be the total of energies in each volume,
the position is obtained with an energy-weighted centroid of the different hit positions. The time is equal to
the time at which the first hit occured.

Command line

The command to use the adder module is

/gate/digitizer/Singles/insert adder

Adder Compton

Definition

The adderCompton module has a different behavior than the classic adder, which performs an energy-
weighted centroid addition of all electronic and photonic hits. Instead, for each electronic energy deposition,
the energy is added to the previous photonic hit in the same volume ID (or discarded if none), but the
localization remains that of the photonic interaction. That way, the Compton kinematics becomes exact for
photonic interations, enabling further studies. The user must use the classic adder afterwards, to handle
multiple photonic interactions in the same crystal.

Command line

The commands to use the adder module are

/gate/digitizer/Singles/insert adderCompton
/gate/digitizer/Singles/insert adder

Readout

With the exception of a detector system where each crystal is read by an individual photo-detector, the
readout segmentation is often different from the basic geometrical structures of the detector. The readout
geometry is an artificial geometry that is usually associated with a group of sensitive detectors.

There are now two ways of modelling this readout process: either a winner-takes-all approach that will
somewhat model APD-like readout, or a energy-centroid approach that will be closer to the block-PMT
readout.

Using the winner-takes-all policy, the grouping has to be determined by the user through a variable named
depth corresponding to the component in the volume hierarchy at which pulses are summed together. Using
this variable, the pulses are summed if their volume ID's are identical to this level of depth. Using the
energy-centroid policy, the depth of the grouping is forced to occur at the 'crystal' level whatever the system
used, so the depth variable is ignored. This means that the pulses in a same level just above the crystal level
are summed together.

Definition

The readout module regroups pulses per block (group of sensitive detectors). For both policy, the resulting
pulse in the block has the total energy of all pulses summed together. For the winner-takes-all policy, the
position of the pulse is the one with the maximum energy. For the energy-centroid policy, the position is
determined by weighting the crystal indices of each pulse by the deposited energy in order to get the energy
centroid position. In this case, only the crystal index is determined, and the actual cartesian coordinates of
the resulting pulse are reseted to the center of this crystal. If a sub-level of the crystal is used (different
layers), then the final sub-level is determined by the one having the maximum energy deposited (so a
winner-takes-all approach for these sub-levels of the crystal is used).

Command line

/gate/digitizer/Singles/insert readout
/gate/digitizer/Singles/readout/setPolicy myPolicy
/gate/digitizer/Singles/readout/setDepth X

The setPolicy command is used to choose the policy. The parameter myPolicy can be TakeEnergyWinner for
the winner-takes-all policy, or TakeEnergyCentroid for the energy centroid policy. If the energy centroid
policy is used, the depth is forced to be at the level just above the crystal level, whatever the system used. If
the winner-takes-all policy is used, then the user must choose the depth at which the readout process takes
place. Please refer below for detailed explanations about how to set the depth in this case. If the setPolicy
command is not set, then the winner-takes-all policy is chosen by default in order to be back-compatible
with previous Gate releases.

Example

Figure XXX illustrates the actions of both the adder and readout modules. The adder module transforms the
hits into a pulse in each individual volume, and then the readout module sums a group of these pulses into a
single pulse at the level of depth as defined by the user for the winner-takes-all policy.

Figure 8.2 Actions of the it adder and it readout
modules

The setDepth command line

The importance of this command line when using the winner-takes-all policy is illustrated through the
following example from a PET system (see Users Guide V7.2:Defining a system). In a cylindricalPET
system, where the first volume level is rsector, and the second volume level is module, as shown in figure
8.3, the readout depth depends upon how the electronic readout functions.

If one PMT reads the four modules in the axial direction, the depth should be set with the command:

/gate/digitizer/Singles/readout/setDepth 1

The energy of this single event is the sum of the energy of the pulses inside the white rectangle (rsector) of

figure 8.3. However, if individual PMTs read each module (group of crystals), the depth should be set with
the command:

/gate/digitizer/Singles/readout/setDepth 2

In this case, the energy of the single event is the sum of the energies of the pulses inside the red box
(module) of figure 8.3.

Figure 8.3: Setting the readout depth in a CylindricalPET system

The next task is to transform this output pulse from the readout module into a single which is the physical
observable of the experiment. This transformation is the result of the detector response and should mimic the
behaviors of the photo-detector, electronics, and acquisition system.

Energy blurring

Definition

The blurring pulse-processor module simulates Gaussian blurring of the energy spectrum of a pulse after the
readout module. This is accomplished by introducing a resolution, R_0 (FWHM), at a given energy, E_0.
According to the camera, the energy resolution may follow different laws, such as an inverse square law or a
linear law.

Command line

For inverse square law (), one must specify the inverse square law and fix the attributes like

the energy of reference and the resolution (example of a 15% resolution of @ 511 KeV):

/gate/digitizer/Singles/blurring
/gate/digitizer/Singles/blurring/setLaw inverseSquare
/gate/digitizer/Singles/blurring/inverseSquare/setResolution 0.15
/gate/digitizer/Singles/blurring/inverseSquare/setEnergyOfReference 511. keV

For linear law, one must specify the linear law and fix the attributes like the energy of reference, the
resolution and the slope:

/gate/digitizer/Singles/blurring
/gate/digitizer/Singles/blurring/setLaw linear
/gate/digitizer/Singles/blurring/linear/setResolution 0.15
/gate/digitizer/Singles/blurring/linear/setEnergyOfReference 511. keV
/gate/digitizer/Singles/blurring/linear/setSlope -0.055 1/MeV

Crystal blurring for a block detector

This type of blurring is used for the scanners where all the detectors are made of the same type of crystal. In
this case, it is often useful to assign a different energy resolution for each crystal in the detector block,
between a minimum and a maximum value. To model the efficiency of the system, a coefficient (between 0
and 1) can also be set.

Command line

As an example, a random blurring of all the crystals between 15% and 35% at a reference energy of 511
keV, and with a quantum efficiency of 90% can be modelled using the following commands:

/gate/digitizer/Singles/insert crystalblurring
/gate/digitizer/Singles/crystalblurring/setCrystalResolutionMin 0.15
/gate/digitizer/Singles/crystalblurring/setCrystalResolutionMax 0.35
/gate/digitizer/Singles/crystalblurring/setCrystalQE 0.9
/gate/digitizer/Singles/crystalblurring/setCrystalEnergyOfReference 511.keV

In this example, for each interaction the program randomly chooses a crystal resolution between 0.15 and
0.35. The crystals are not assigned a constant resolution. The crystal quantum efficiency is set using
setCrystalQE and represents the probability for the event to be detected by the photo-detector. This
parameter represents the effect of the transfer efficiency of the crystal and of the quantum efficiency of the
photo-detector.

Local energy blurring for a detector module with several types of crystals

The LocalBlurring module is very similar to the energy blurring module, but different energy resolutions are
applied to different volumes. This type of blurring is useful for detectors with several layers of different
scintillation crystals (e.g. depth of interaction measurement with a phoswich module in a CylindricalPET
system).

Command line

To use the LocalBlurring module:

Insert the LocalBlurring module,
choose a valid detector volume name the blurring will be applied to,
set the resolution for this volume, and set the reference energy for this volume.

For example, if a detector has a resolution of 15.3% @ 511 KeV for a crystal called crystal1 and has a
resolution of 24.7% @ 511 KeV for another crystal (crystal2) in a phoswich configuration, the following
commands should be used:

/gate/digitizer/Singles/insert localBlurring
/gate/digitizer/Singles/localBlurring/chooseNewVolume crystal1
/gate/digitizer/Singles/localBlurring/crystal1/setResolution 0.153
/gate/digitizer/Singles/localBlurring/crystal1/setEnergyOfReference 511 keV
/gate/digitizer/Singles/localBlurring/chooseNewVolume crystal2
/gate/digitizer/Singles/localBlurring/crystal2/setResolution 0.247
/gate/digitizer/Singles/localBlurring/crystal2/setEnergyOfReference 511 keV

BEWARE: crystal1 and crystal2 must be valid Sensitive Detector volume names !!

Intrinsic resolution blurring with crystals of different compositions

Definition

This blurring pulse-processor simulates a local Gaussian blurring of the energy spectrum (different for
different crystals) based on the following model:

where and LY, and , are the Light Yield, Transfer, and Quantum Efficiency for each
crystal.

 is the relative variance of the gain of a Photo Multiplier Tube (PMT) or of an Avalanche Photo Diode
(APD). It is hard-codded and set to 0.1.

If the intrinsic resolutions, (Ri), of the individual crystals are not defined, then they are set to one.

To use this digitizer module properly, several modules must be set first. These digitizer modules are
GateLightYield, GateTransferEfficiency, and GateQuantumEfficiency.

Definition of the light yield

The light yield pulse-processor simulates the crystal light yield. Each crystal must be given the correct light
yield. This module converts the pulse energy into the number of scintillation photons emitted, Nph .

Definition of the transfer efficiency

The transfer efficiency pulse-processor simulates the transfer efficiencies of the light photons in each crystal.
This digitizer reduces the "pulse" energy (by reducing the number of scintillation photons) by a transfer
efficiency coefficient which must be a number between 0 and 1.

Definition of the quantum efficiency

The quantum efficiency pulse-processor simulates the quantum efficiency for each channel of a photo-
detector, which can be a Photo Multiplier Tube (PMT) or an Avalanche Photo Diode (APD).

Command lines for modelling the intrinsic resolution

The command lines are illustrated using an example of a phoswich module made of two layers of different
crystals. One crystal has a light yield of 27000 photons per MeV (LSO crystal), a transfer efficiency of 28%,
and an intrinsic resolution of 8.8%. The other crystal has a light yield of 8500 photons per MeV (LuYAP
crystal), a transfer efficiency of 24% and an intrinsic resolution of 5.3%

In the case of a cylindricalPET system, the construction of the crystal geometry is truncated for clarity (the
truncation is denoted by ...). The digitizer command lines are:

LSO layer
/gate/crystal/daughters/name LSOlayer

BGO layer
/gate/crystal/daughters/name LuYAPlayer

A T T A C H S Y S T E M
/gate/systems/cylindricalPET/crystal/attach crystal
/gate/systems/cylindricalPET/layer0/attach LSOlayer
/gate/systems/cylindricalPET/layer1/attach LuYAPlayer

A T T A C H C R Y S T A L S D
/gate/LSOlayer/attachCrystalSD
/gate/LuYAPlayer/attachCrystalSD

In this example the phoswich module is represented by the crystal volume and is made of two different material layers.
To apply the resolution blurring of equation , the parameters discussed above must be defined for each layer
#(i.e. Light Yield, Transfer, Intrinsic Resolution, and the Quantum Efficiency).
DEFINE TRANSFER EFFICIENCY FOR EACH LAYER
/gate/digitizer/Singles/insert transferEfficiency
/gate/digitizer/Singles/transferEfficiency/chooseNewVolume LSOlayer
/gate/digitizer/Singles/transferEfficiency/LSOlayer/setTECoef 0.28
/gate/digitizer/Singles/transferEfficiency/chooseNewVolume LuYAPlayer
/gate/digitizer/Singles/transferEfficiency/LuYAPlayer/setTECoef 0.24

DEFINE LIGHT YIELD FOR EACH LAYER
/gate/digitizer/Singles/insert lightYield
/gate/digitizer/Singles/lightYield/chooseNewVolume LSOlayer
/gate/digitizer/Singles/lightYield/LSOlayer/setLightOutput 27000
/gate/digitizer/Singles/lightYield/chooseNewVolume LuYAPlayer
/gate/digitizer/Singles/lightYield/LuYAPlayer/setLightOutput 8500

DEFINE INTRINSIC RESOLUTION FOR EACH LAYER
/gate/digitizer/Singles/insert intrinsicResolutionBlurring
/gate/digitizer/Singles/intrinsicResolutionBlurring/ chooseNewVolume LSOlayer
/gate/digitizer/Singles/intrinsicResolutionBlurring/ LSOlayer/setIntrinsicResolution 0.088
/gate/digitizer/Singles/intrinsicResolutionBlurring/ LSOlayer/setEnergyOfReference 511 keV
/gate/digitizer/Singles/intrinsicResolutionBlurring/ chooseNewVolume LuYAPlayer
/gate/digitizer/Singles/intrinsicResolutionBlurring/ LuYAPlayer/setIntrinsicResolution 0.053
/gate/digitizer/Singles/intrinsicResolutionBlurring/ LuYAPlayer/setEnergyOfReference 511 keV

DEFINE QUANTUM EFFICIENCY OF THE PHOTODETECTOR
/gate/digitizer/Singles/insert quantumEfficiency
/gate/digitizer/Singles/quantumEfficiency/chooseQEVolume crystal
/gate/digitizer/Singles/quantumEfficiency/setUniqueQE 0.1

Note: A complete example of a phoswich module can be in the PET benchmark.

Note for Quantum Efficiency

With the previous commands, the same quantum efficiency will be applied to all the detector channels. The
user can also provide lookup tables for each detector module. These lookup tables are built from the user
files.

To set multiple quantum efficiencies using files (fileName1, fileName2, ... for each of the different modules),
the following commands can be used:

/gate/digitizer/Singles/insert quantumEfficiency
/gate/digitizer/Singles/quantumEfficiency/chooseQEVolume crystal
/gate/digitizer/Singles/quantumEfficiency/useFileDataForQE fileName1
/gate/digitizer/Singles/quantumEfficiency/useFileDataForQE fileName2

If the crystal volume is a daughter of a module volume which is an array of 8 x 8 crystals, the file fileName1
will contain 64 values of quantum efficiency. If several files are given (in this example two files), the
program will choose randomly between theses files for each module.

Important note

After the introduction of the lightYield (LY), transferEfficiency and quantumEfficiency} modules,
the energy variable of a pulse is not in energy unit (MeV) but in number of photoelectrons Npe.

In order to correctly apply a threshold on a phoswhich module, the threshold should be based on this number
and not on the real energy. In this situation, to apply a threshold at this step of the digitizer chain, the
threshold should be applied as explained in #Thresholder & Upholder. In this case, the GATE program
knows that these modules have been used, and will apply threshold based upon the number Npe rather than
energy. The threshold set with this sigmoidal function in energy unit by the user is translated into numberNpe
with the lower light yield of the phoswish module. To retrieve the energy it is necessary to apply a
calibration module.

Calibration

The Calibration module of the pulse-processor models a calibration between Nphe and Energy. This is useful
when using the class(es) GateLightYield, GateTransferEfficiency, and GateQuantumEfficiency. In addition,
a user specified calibration factor can be used.

Command line

To set a calibration factor on the energy, use the following commands:

/gate/digitizer/Singles/insert calibration
/gate/digitizer/Singles/setCalibration VALUE

If the calibration digitizer is used without any value, it will correct the energy as a function of values used in
GateLightYield, GateTransferEfficiency, and GateQuantumEfficiency.

Crosstalk

Definition

The crosstalk module simulates the optical and/or electronic crosstalk of the scintillation light between
neighboring crystals. Thus, if the input pulse arrives in a crystal array, this module creates pulses around it
(in the edge and corner neighbor crystals). The percentage of energy that is given to the neighboring crystals
is determined by the user.

BEWARE: this module works only for a chosen volume that is an array repeater!!!

Command line

To insert a crosstalk module that distributes 10% of input pulse energy to the adjacent crystals and 5% to the
corner crystals, the following commands can be used:

/gate/digitizer/Singles/insert crosstalk
/gate/digitizer/Singles/crosstalk/chooseCrosstalkVolume crystal
/gate/digitizer/Singles/crosstalk/setEdgesFraction 0.1
/gate/digitizer/Singles/crosstalk/setCornersFraction 0.05

In this example, a pulse is created in each neighbor of the crystal that received the initial pulse. These
secondary pulses have 10% (5% for each corner crystals) of the initial energy of the pulse.

Thresholder & Upholder

Definition

The Thresholder/Upholder modules allow the user to apply an energy window to discard low and high
energy photons. The low energy cut, supplied by the user, represents a threshold response, below which the
detector remains inactive. The user-supplied high energy cut is the maximum energy the detector will
register. In both PET and SPECT analysis, the proper setting of these windows is crucial to mimic the
behavior of real scanners, in terms of scatter fractions and count rate performances for instance.

Command line

In a typical PET scanner, the energy selection for the photo-peak is performed using the following
commands. A low threshold of 0 keV allows the user to see all the events, and is often useful for debugging
a simulation.

/gate/digitizer/Singles/insert thresholder
/gate/digitizer/Singles/thresholder/setThreshold 250. keV
/gate/digitizer/Singles/insert upholder
/gate/digitizer/Singles/upholder/setUphold 750. keV

Energy windows

Definition

In SPECT analysis, subtractive scatter correction methods such as the dual-energy-window or the triple-
energy-window method may be performed in post processing on images obtained from several energy
windows. If one needs multiple energy windows, several digitizer branches will be created. Furthermore, the

projections associated to each energy window can be recorded into one interfile output.

Command line

In the following example, 3 energy windows are defined separately with their names and thresholds (see
#Thresholder & Upholder):

/gate/digitizer/name Window1
/gate/digitizer/insert singleChain
/gate/digitizer/Window1/setInputName Singles
/gate/digitizer/Window1/insert thresholder
/gate/digitizer/Window1/thresholder/setThreshold 315 keV
/gate/digitizer/Window1/insert upholder
/gate/digitizer/Window1/upholder/setUphold 328 keV

/gate/digitizer/name Window2
/gate/digitizer/insert singleChain
/gate/digitizer/Window2/setInputName Singles
/gate/digitizer/Window2/insert thresholder
/gate/digitizer/Window2/thresholder/setThreshold 328 keV
/gate/digitizer/Window2/insert upholder
/gate/digitizer/Window2/upholder/setUphold 400 keV

/gate/digitizer/name Window3
/gate/digitizer/insert singleChain
/gate/digitizer/Window3/setInputName Singles
/gate/digitizer/Window3/insert thresholder
/gate/digitizer/Window3/thresholder/setThreshold 400 keV
/gate/digitizer/Window3/insert upholder
/gate/digitizer/Window3/upholder/setUphold 416 keV

When specifying the interfile output (see Users Guide V7.2:Data output#Interfile output of projection set),
the different window names must be added with the following commands:

/gate/output/projection/setInputDataName Window1
/gate/output/projection/addInputDataName Window2
/gate/output/projection/addInputDataName Window3

Sigmoidal thresholder

Definition

The Sigmoidal thresholder models a threshold discriminator based on a sigmoidal function. A sigmoidal

function is an S-shaped function of the form, , which acts as an exponential

ramp from 0 to 1:

where the parameter α is proportional to the slope at symmetrical point E0(σ(E0) = 1 / 2).

For this type of threshold discriminator, the user chooses the threshold setThreshold, the percentage of
acceptance for this threshold setThresholdPerCent, and the α parameter setThresholdAlpha. With these
parameters and the input pulse energy, the function is calculated. If the result is bigger than a random
number generated between 0 and 1, the pulse is accepted and copied into the output pulse-list. On the other

hand, if this criteria is not met, the input pulse is discarded.

Command line

/gate/digitizer/Singles/insert sigmoidalThresholder
/gate/digitizer/Singles/sigmoidalThresholder/setThreshold 250 keV
/gate/digitizer/Singles/sigmoidalThresholder/setThresholdAlpha 60.
/gate/digitizer/Singles/sigmoidalThresholder/setThresholdPerCent 0.95

Time resolution

Definition

The temporal resolution module introduces a Gaussian blurring in the time domain. It works in the same
manner as the blurring module, but with time instead of energy.

Command line

To set a Gaussian temporal resolution (FWHM) of 1.4 ns, use the following commands:

/gate/digitizer/Singles/insert timeResolution
/gate/digitizer/Singles/timeResolution/setTimeResolution 1.4 ns

Spatial blurring for SPECT

For SPECT simulations, the spatial resolution is assumed to follow a Gaussian distribution defined by its
width σ.

Command line

/gate/digitizer/Singles/insert spblurring
/gate/digitizer/Singles/spblurring/setSpresolution 2.0 mm
/gate/digitizer/Singles/spblurring/verbose 1

Spatial blurring for PET

In PET analysis, coincidence events provide the lines of response (LOR) needed for the image
reconstruction. Only the two crystal numbers are transferred by the simulation. The determination of these
crystal numbers is based on the crystal in which the highest energy has been deposited. Without additional
spatial blurring of the crystal, simulation results will always have a better spatial resolution than
experimental measurements. This module is only available for the ecat system. The spatial blurring is based
on a 2D Gaussian function.

Command line

E C A T 7
/gate/output/sinogram/enable
/gate/output/sinogram/RadialBins Your_Sinogram_Radial_Bin_Number
/gate/output/sinogram/setTangCrystalBlurring Your_Value_1 mm
/gate/output/sinogram/setAxialCrystalBlurring Your_Value_2 mm

Noise

Definition

Different sources of background noise exist in a PET/SPECT architecture. For example, the electronics can
introduce its own noise, or some crystals used for the detection, such as LSO, contains radioactive nucleus,
which can contribute to the background detection count rate. Within GATE, the noise module adds such
background events, in a totally generic way, so that any kind of source of noise can be simulated. To do so,
the energy and the inter-event time interval are chosen randomly, for each event, into user defined
distributions, by using the mechanism described in #Distributions.

Command line

In the following example, a noise source is introduced, whose energy is distributed according to a Gaussian
law, and whose time distribution follows a Poisson process. To do this, one first defines the two necessary
distributions. Since the noise description uses the distribution of the time interval between consecutive
events, one has to define an exponential distribution. Indeed, if the probability of detecting k events in a time

interval of t is distributed along a Poisson law , then the probability density of

having a time interval in the range [t;t + dt] between two consecutive events is given by dP2(t) = λe − λtdt.

/gate/distributions/name energy_distrib
/gate/distributions/insert Gaussian
/gate/distributions/energy_distrib/setMean 450 keV
/gate/distributions/energy_distrib/setSigma 1 keV

/gate/distributions/name dt_distrib
/gate/distributions/insert Exponential
/gate/distributions/dt_distrib/setLambda 7.57 mus

/gate/digitizer/Singles/insert noise
/gate/digitizer/Singles/noise/setDeltaTDistribution dt_distrib
/gate/digitizer/Singles/noise/setEnergyDistribution energy_distrib

The special event ID, event_ID=-2, is assigned to these noise events.

Local efficiency

Definition

The different crystals, or groups of crystals, composing a PET/SPECT system can be characterized by their
own efficiency. GATE offers a method to describe such efficiency per crystal or volume.

To define the efficiency distribution in the scanner, one can specify which level of the volume hierarchy of
the system are differentiated (see the examples in #Command lines). Then the distribution of efficiency, for
each differentiated volume, is specified via a generic distribution, as described in #Distributions.

Command lines

In the following examples, one assumes that the system is composed of 8 blocks (level1) of 64 crystals
(level2). The first example shows how to specify one efficiency per block, defined in a file named

eff_per_block.dat, containing 8 values (one per block).

/gate/distributions/name block_eff_distrib
/gate/distributions/insert File
/gate/distributions/block_eff_distrib/autoX true
/gate/distributions/block_eff_distrib/setFileName eff_per_block.dat
/gate/distributions/block_eff_distrib/read

/gate/digitizer/Singles/insert localEfficiency
/gate/digitizer/Singles/localEfficiency/enableLevel 1
/gate/digitizer/Singles/localEfficiency/disableLevel 2
/gate/digitizer/Singles/localEfficiency/setEfficiency block_eff_distrib

In the second example, one specifies a different efficiency for each crystal inside a block, but the scheme is
repeated from one block to another. So a pattern of 64 efficiency values is defined in the file
eff_within_block.dat.

/gate/distributions/name within_block_eff_distrib
/gate/distributions/insert File
/gate/distributions/within_block_eff_distrib/autoX true
/gate/distributions/within_block_eff_distrib/setFileName eff_within_block.dat
/gate/distributions/within_block_eff_distrib/read

/gate/digitizer/Singles/insert localEfficiency
/gate/digitizer/Singles/localEfficiency/disableLevel 1
/gate/digitizer/Singles/localEfficiency/enableLevel 2
/gate/digitizer/Singles/localEfficiency/setEfficiency within_block_eff_distrib

Finally, in the next example, each crystal has its own efficiency, described in the file eff_per_crystal.dat
containing 8 x 64 elements.

/gate/distributions/name crystal_eff_distrib
/gate/distributions/insert File
/gate/distributions/crystal_eff_distrib/autoX true
/gate/distributions/crystal_eff_distrib/setFileName eff_per_crystal.dat
/gate/distributions/crystal_eff_distrib/read

/gate/digitizer/Singles/insert localEfficiency
/gate/digitizer/Singles/localEfficiency/enableLevel 1
/gate/digitizer/Singles/localEfficiency/enableLevel 2
/gate/digitizer/Singles/localEfficiency/setEfficiency crystal_eff_distrib

Memory buffers and bandwidth

To mimic the effect of limited transfer rate, a module models the data loss due to an overflow of a memory
buffer, read periodically, following a given reading frequency. This module uses two parameters, the reading
frequency ν and the memory depth D . Moreover, two reading methods can be modelled, that is, in an event
per event basis (an event is read at each reading clock tick), or in a full buffer reading basic (at each reading
clock tick, the whole buffer is emptied out). In the first reading method, the data rate is then limited to ν ,
while in the second method, the data rate is limited to . When the size limit is reached, any new pulse
is rejected, until the next reading clock tick arrival which frees a part of the buffer. In such a case, a non null
buffer depth allows to manage a local rise of the input data flow.

Command line

To specify a buffer, read at 10 MHz, with a buffer depth of 64 events, in a mode where the whole buffer is
read in one clock tick, one can use:

/gate/digitizer/Your_Single_chain/insert buffer
/gate/digitizer/Your_Single_chain/buffer/setBufferSize 64 B
/gate/digitizer/Your_Single_chain/buffer/setReadFrequency 10 MHz
/gate/digitizer/Your_Single_chain/buffer/setMode 1

The chain Your_Single_chain can be the default chain Singles or any of single chain that the user has
defined.

The size of the buffer represents the number of elements, 64 Singles in this example, that the user can store
in a buffer.

To read the buffer in an event by event basis, one should replace the last line by setMode = 0.

Pile-up

Definition

An important characteristic of a detector is its response time, which is the time that the detector takes to
form the signal after the arrival of the radiation. The duration of the signal is also important. During this
period, if a second event can be accepted, this second signal will pile up on the first. The resulting pulse is a
combinaison in terms of time and energy, of the two signals. If N pulses enter in the time window of the
same sensitive volume (set by the depth of the system level), the output pulse of the pile-up module will be a

pulse with an output energy defined by the sum of the energies and a time set to the last

time of the last pulse participating to the pile-up tout = tN.

Since multiple events are grouped into a unique event with the pile-up effect, one can consider this as a loss
of events occuring during a given time length, which can be seen as a dead time effect. Moreover, since the
pile-up end time is always updated with the last single occuring, the effect is more or less represented by a
paralysable dead-time.

Command line

To insert a pile-up corresponding to a signal formation time of 100 ns in a module corresponding to the
crystal group as described by the 4th level of the system, one should use:

/gate/digitizer/Singles/insert pileup
/gate/digitizer/Singles/pileup/setDepth 4
/gate/digitizer/Singles/pileup/setPileup 100 ns

Dead time

Due to the shaping time of signals or for any other reason, each detection of a single event can hide the
subsequent single detected on the same electronic module. This loss lasts a certain amount of time,
depending on the characteristics of the detectors used as well as of the readout electronics. The dead time
can be modelled in GATE as shown below. Two models of the dead-time have been implemented in the
digitizer: paralysable and nonparalysable response. These models can be implemented event by event during
a simulation. The detailed method underlying these models can be found in Knoll 1979 (Radiation detection
and measurement, John Wiley & Sons, New York). The fundamental assumptions made by these two models
are illustrated in figure 8.4.

Figure 8.4: For 7 incoming particles and a fixed dead-time $τ$, the nonparalysable electronic readout will accept 3 particles,
and the paralysable will accept only 1 particle (the dashed arrows represents the removed events, while the solid arrows are

the accepted singles)

Definition

The dead time module is applied to a specific volume within the Sensitive Detector system hierarchy. All
events taking place within this volume level will trigger a dead-time detector response. This action of the
digitizer simulates the time during which this detector, busy at processing a particle, will not be able to
process the next one. Moreover, one can simulate the case where data are accumulated into a buffer, which is
written to a mass storage having a time access, during which no other data can be processed. In such a case,
the dead time is not started after the first data, but once the buffer is full. This case can also be simulated in
GATE.

Command line

To apply a dead-time to the volume_name (which has to be previously attached to a level of the system), the
following commands can be used:

ATTACHEMENT TO THE SYSTEM
/gate/systems/system_name/system_level_name/attach volume_name
..
..
DEADTIME
/gate/digitizer/Singles/insert deadtime
/gate/digitizer/Singles/deadtime/setDeadTime 100000. ns
/gate/digitizer/Singles/deadtime/setMode paralysable
/gate/digitizer/Singles/deadtime/chooseDTVolume volume_name

The name system_name and its corresponding system_level_name do not exist and have to be chosen in the
tables given in Users Guide V7.2:Defining a system.

In the second example, a dead time corresponding to a disk access of 1 µs for a memory buffer of 1 Mbyte is
given. The setMode command specifies the behavior of the dead time during the disk access. If this mode is
set to 0, the memory buffer is assumed to be a shared resource for the computer, and thus is not available
during the disk writing. So, no data can fill the buffer during the disk access. On the other hand, in case of
model 1, the buffer is immediately freed after being sent to the disk controller. Data are thus not rejected,
unless the buffer is filled up again, before the disk access is finished. In such a case, the dead time module
will be totally transparent (ie. will not reject any data), unless the counting rate is high enough to fill the
buffer in a time lower than the disk access dead time.

ATTACHEMENT TO THE SYSTEM
/gate/systems/system_name/system_level_name/attach volume_name
..
..
DEADTIME
/gate/digitizer/Singles/insert deadtime
/gate/digitizer/Singles/deadtime/setDeadTime 1 mus
/gate/digitizer/Singles/deadtime/setMode nonparalysable
/gate/digitizer/Singles/deadtime/chooseDTVolume volume_name
/gate/digitizer/Singles/deadtime/setBufferSize 1 MB
/gate/digitizer/Singles/deadtime/setBufferMode 0

Multiple processor chains
The use of multiple processor chains makes the design of the digitizer and data output system extremely
flexible. The manager for the pulse-processors is called the GatePulseProcessorChain, and has a messenger
called the GatePulseProcessorChainMessenger. By default, all the digitizer components are stored in one
processor-chain called digitizer/Singles. New processor chains can be created that specify the source of their
data. For instance, the following sequence of commands will generate three outputs:

Singles with no energy cut
LESingles with a low-energy window
HESingles with a high-energy window

For a standard PET (with BGO crystals), the components of the standard processor chain will consist in the
following commands:

/gate/digitizer/Singles/insert adder
/gate/digitizer/Singles/insert readout
/gate/digitizer/Singles/readout/setDepth 1

To add the blurring filter to the "Single" branch:

/gate/digitizer/Singles/insert blurring
/gate/digitizer/Singles/blurring/setResolution 0.26
/gate/digitizer/Singles/blurring/setEnergyOfReference 511. keV

The following commands create a low-energy chain branching from the output of "Singles" chain:

/gate/digitizer/name LESingles
/gate/digitizer/insert singleChain
/gate/digitizer/LESingles/setInputName Singles
/gate/digitizer/LESingles/insert thresholder
/gate/digitizer/LESingles/thresholder/setThreshold 50. keV
/gate/digitizer/LESingles/insert upholder
/gate/digitizer/LESingles/upholder/setUphold 350. keV

These next commands create a high-energy chain branching from the output of the "Singles" chain:

/gate/digitizer/name HESingles
/gate/digitizer/insert singleChain
/gate/digitizer/HESingles/setInputName Singles
/gate/digitizer/HESingles/insert thresholder
/gate/digitizer/HESingles/thresholder/setThreshold 350. keV
/gate/digitizer/HESingles/insert upholder
/gate/digitizer/HESingles/upholder/setUphold 650. keV

Coincidence sorter

Definition

The coincidence sorter searches, into the singles list, for pairs of coincident singles. Whenever two or more
singles are found within a coincidence window, these singles are grouped to form a Coincidence event. Two
methods are possible to find coincident singles within GATE. In the first method, when a single is detected,
it opens a new coincidence window, and search for a second single occurring during the length of the
window. In this method, as long as the window opened by the first single is not closed, no other single can
open its own coincidence window. In the second method, all singles open their own coincidence window,
and a logical OR is made between all the individual signals to find coincidences. The two methods are
available in GATE, and can lead to slightly different results, for a given window width. A comparison of the
difference of these two behaviors in a real case is sketched in figure 8.5.

Figure 8.5: Comparison between the two methods of coincidence sorting, for a given
succession of singles. In the first one (top), the S2 single does not open its own window

since its arrival time is within the window opened by S1. With this method, only one
coincidence is created, between S1 and S2. With the second method (bottom), where all

singles open their own coincidence window, 2 different coincidences are identified.

To exclude coincidence coming from the same particle that scattered from a block to an adjacent block, the
proximity of the two blocks forming the coincidence event is tested. By default, the coincidence is valid
only if the difference in the block numbers is greater or equal to two, but this value can be changed in GATE
if needed.

Delayed coincidences

Each Single emitted from a given source particle is stored with an event ID number, which uniquely
identifies the decay from which the single is coming from. If two event ID numbers are not identical in a
coincidence event, the event is defined as a Random coincidence.

An experimental method used to estimate the number of random coincidences consists of using a delayed
coincidence window. By default, the coincidence window is opened when a particle is detected (i.e. when a
Single is created). In this method, a second coincidence window is created in parallel to the normal
coincidence window (which in this case is referred to as the prompt window). The second window (usually
with the same width) is open, but is shifted in time. This shift should be long enough to ensure that two
particles detected within it are coming from different decays. The resulting number of coincidences detected
in this delayed window approximates the number of random events counted in the prompt window. GATE
offers the possibility to specify an offset value, for the coincidence sorter, so that prompts and/or delayed
coincidence lines can be simulated.

Multiple coincidences

When more than two singles are found in coincidence, several type of behavior could be implemented.
GATE allows to model 9 different rules that can be used in such a case. The list of rules along with their
explanation are given in table 8.2, and a comparison of the effects of each processing rule for various cases
of multiple coincidences is shown in figure 8.6. If no policy is specified, the default one used is:
keepIfAllAreGoods.

Table 8.2: Available multiple policy and associated meaning. When a multiple coincidence involving n
singles is peocessed, it is first decomposed into a list of n·(n−1) pairs which are analyzed individually. In this
table, the term "good" means that a pair of singles are in coincidence and that the 2 singles are separated by
a number of blocks greater than or equal to the minSectorDifference parameter of the coincidence sorter.
The prefix "take" means that 1 or more pairs of coincidences will be stored, while the prefix "keep" means

that a unique coincidence, composed of at least three singles will be kept in the data flow and is called
"multicoincidence". In the latter case, the multicoincidence will not be written to the disk, but may

participate to a possible deadtime or bandwidth occupancy. The user may clear the multicoincidence at any
desired step of the acquisition, by using the multipleKiller pulse processor (described in #Multiple

coincidence removal). The "kill" prefix means that all events will be discarded and will not produce any
coincidence.

Policy name Description
takeAllGoods Each good pairs are considered.
takeWinnerOfGoods Only the good pair with the highest energy is considered.
takeWinnerIfIsGood If the pair with the highest energy is good, take it, otherwise, kill the event.
takeWinnerIfAllAreGoods If all pairs are goods, take the one with the highest energy.
keepIfOnlyOneGood If exactly one pair is good, keep the multicoincidence.
keepIfAnyIsGood If at least one pair is good, keep the multicoincidence.
keepIfAllAreGoods If all pairs are goods, keep the multicoincidence.

killAllIfMultipleGoods If more than one pairs is good, the event is seen as a real "multiple" and thus,
all events are killed.

killAll No multiple coincidences are accepted, no matter how many good pairs are
present.

Figure 8.6: Comparison of the behavior of the available multiple processing policies, for various multiple coincidence situations. The
stars represent the detected singles. The size of the star, as well as the number next to it, indicate the energy level of the single (ie.

single no 1 has more energy than single no 2, which has itself more energy than the single no 3). The lines represent the possible good
coincidences (ie. with a sector difference higher than or equal to the minSectorDifference of the coincidence sorter). In the table, a
minus(-) sign indicates that the event is killed (ie. no coincidence is formed). The ⋆ sign indicates that all the singles are kept into a

unique multicoincidence, which will not be written to disk, but which might participate to data loss via dead time or bandwidth
occupancy. In the other cases, the list of pairs which are written to the disk (unless being removed thereafter by possible filter applied

to the coincidences) is indicated

Table associated with Figure 8.6
Policy name Case 1 Case 2 Case 3 Case 4

takeAllGoods (1,2) (1,2); (1,3); (2,3) (1,2); (2,3) (1,3); (2,3)
takeWinnerOfGoods (1,2) (1,2) (1,2) (1,3)
takeWinnerIfIsGood (1,2) (1,2) (1,2)
takeWinnerIfAllAreGoods - (1,2) - -
keepIfOnlyOneGood * - -
keepIfAnyIsGood * * * *
keepIfAllAreGoods - * - -
killAllIfMultipleGoods (1,2) - - -
killAll - - - -

Command line

To set up a coincidence window of 10 ns, the user should specify:

/gate/digitizer/Coincidences/setWindow 10. ns

To change the default value of the minimum sector difference for valid coincidences (the default value is 2),
the command line should be used:

/gate/digitizer/Coincidences/minSectorDifference <number>

By default, the offset value is equal to 0, which corresponds to a prompt coincidence sorter. If a delayed
coincidence sorter is to be simulated, with a 100 ns time shift for instance, the offset value should be set
using the command:

/gate/digitizer/Coincidences/setOffset 100. ns

To specify the depth of the system hierarchy for which the coincidences have to be sorted, the following
command should be used:

/gate/digitizer/Coincidences/setDepth <system's depth (1 by default)>

As explained in figure 8.5, there are two methods for building coincidences. The default one is the method 1.
To switch to method 2, one should use:

/gate/digitizer/Coincidences/allPulseOpenCoincGate true

So when set to false (by default) the method 1 is chosen, and when set to true, this is the method 2. Be
aware that the method 2 is experimental and not validated at all, so potentially containing non-
reported bugs.

Finally, the rule to apply in case of multiple coincidences is specified as follows:

/gate/digitizer/Coincidences/setMultiplePolicy <policyName>

The default multiple policy is keepIfAllAreGoods.

Multiple coincidence sorters
Multiple coincidence sorters can be used in GATE. To create a coincidence sorter, the sorter must be named
and a location specified for the input data. In the example below, three new coincidence sorters are created:

One with a very long coincidence window:

/gate/digitizer/name LongCoincidences
/gate/digitizer/insert coincidenceSorter
/gate/digitizer/LongCoincidences/setInputName Singles
/gate/digitizer/LongCoincidences/setWindow 1000. ns

One for low-energy singles

/gate/digitizer/name LECoincidences
/gate/digitizer/insert coincidenceSorter
/gate/digitizer/LECoincidences/setWindow 10. ns
/gate/digitizer/LECoincidences/setInputName LESingles

One for high-energy-singles

/gate/digitizer/name HECoincidences
/gate/digitizer/insert coincidenceSorter

/gate/digitizer/HECoincidences/setWindow 10. ns
/gate/digitizer/HECoincidences/setInputName HESingles

A schematic view corresponding to this example is shown in figure 8.7.

Figure 8.7: Readout scheme produced by the listing from the sections

Coincidence processing and filtering

Coincidence pulse processors

Once the coincidences are identified, further processing can be applied to mimic count losses that may occur
because of the acquisition limitations, such as dead time. Count loss may also be due to the limited
bandwidth of wires or buffer capacities of the I/O interface. The modelling of such effects within GATE is
explained below. Moreover, for PET scanners using a delayed coincidence line, data coming from the two
types of coincidences (ie. prompts and delayed) can be processed by a unique coincidence sorter. If so, the
rate of a coincidence type can affect the rate of the other. For instance, a prompt coincidence can produce
dead time which will hide a delayed coincidence. The prompt coincidence events can also saturate the
bandwidth, so that the random events are partially hidden.

The modelling of such effects consists in grouping the two different coincidence types into a unique one,
which is then processed by a unique filter.

Definition

A coincidence pulse processor is a structure that contains the list of coincidence sources onto which a set of
filters will be applied, along with the list of filters themselves. The order of the list of coincidence may
impact the repartition of the data loss between the prompt and the delay lines. For example, if the line of
prompt coincidences has priority over the line of delayed coincidences, then the events of the latter have
more risk to be rejected by a possible buffer overflow than those of the former. This kind of effects can be
suppressed by specifying that, inside an event, all the coincidences arriving with the same time flag are
merged in a random order.

Command line

To implement a coincidence pulse processor merging two coincidence lines into one, and apply an XXX
module followed by another YYY module on the total data flow, one should use the following commands,
assuming that the two coincidence lines named prompts and delayed are already defined:

/gate/digitizer/name myCoincChain
/gate/digitizer/insert coincidenceChain
/gate/digitizer/myCoincChain/addSource prompts
/gate/digitizer/myCoincChain/addSource delayed
/gate/digitizer/myCoincChain/insert XXX
set parameter of XXX....
/gate/digitizer/myCoincChain/insert YYY
set parameter of YYY....

To specify that two coincidences arriving with the same time flag have to be processed in random order, one
should use the command:

/gate/digitizer/myCoincChain/usePriority false

Coincidence dead time

The dead time for coincidences works in the same way as that acting on the singles data flow. The only
difference is that, for the single dead time, one can specify the hierarchical level to which the dead time is
applied on (corresponding to the separation of detectors and electronic modules), while in the coincidence
dead time, the possibility to simulate separate coincidence units (which may exist) is not implemented.
Apart from this limitation, the command lines for coincidence dead time are identical to the ones for singles
dead time, as described in #Pile-up. When more than one coincidence can occur for a unique GEANT4 event
(if more than one coincidence line are added to the coincidence pulse processor, or if multiple coincidences
are processed as many coincidences pairs), then the user can specify that the whole event is kept or rejected,
depending on the arrival time of the first coincidence. To do so, one should use the command line:

/gate/digitizer/myCoincChain/deadtime/conserveAllEvent true

Coincidence buffers

The buffer module for affecting coincidences uses exactly the same command lines and functionalities as the
ones used for single pulse lists, and described in section #Local efficiency.

Multiple coincidence removal

Definition

If the multiple coincidences are kept and not splitted into pairs (ie. if any of the keepXXX multiple
coincidence policy is used), the multicoincidences could participate to dataflow occupancy, but could not be
written to the disk. Unless otherwise specified, any multicoincidence is then cleared from data just before the
disk writing. If needed, this clearing could be performed at any former coincidence processing step, by
inserting the multipleKiller module at the required level. This module has no parameter and just kill the
multicoincidence events. Multiple coincidences split into many pairs are not affected by this module and
cannot be distinguished from the normal "simple" coincidences.

Command line

To insert a multipleKiller, one has to use the syntax:

/gate/digitizer/myCoincChain/insert multipleKiller

Example of a digitizer setting
Here, the digitizer section of a GATE macro file is analyzed line by line. The readout scheme produced by
this macro, which is commented on below, is illustrated in Figure 8.8.

Figure 8.8: Readout scheme produced by the listing below. The disk icons represent the data written to the GATE output files

1 # A D D E R
2 /gate/digitizer/Singles/insert adder
3
4 # R E A D O U T
5 /gate/digitizer/Singles/insert readout
6 /gate/digitizer/Singles/readout/setDepth
7
8 # E N E R G Y B L U R R I N G
9 /gate/digitizer/Singles/insert blurring
10 /gate/digitizer/Singles/blurring/setResolution 0.26

11 /gate/digitizer/Singles/blurring/setEnergyOfReference 511. keV
12
13 # L O W E N E R G Y C U T
14 /gate/digitizer/Singles/insert thresholder
15 /gate/digitizer/Singles/thresholder/setThreshold 50. keV
16
17 /gate/digitizer/name cutLowSingles
18 /gate/digitizer/insert singleChain
19 /gate/digitizer/cutLowSingles/setInputName Singles
20
21 # N O I S E
22
23 /gate/distributions/name energy_distrib
24 /gate/distributions/insert Gaussian
25 /gate/distributions/energy_distrib/setMean 450 keV
26 /gate/distributions/energy_distrib/setSigma 30 keV
27
28 /gate/distributions/name dt_distrib
29 /gate/distributions/insert Exponential
30 /gate/distributions/dt_distrib/setLambda 7.57 mus
31
32 /gate/digitizer/cutLowSingles/insert noise
33 /gate/digitizer/cutLowSingles/noise setDeltaTDistributions dt_distrib
34 /gate/digitizer/cutLowSingles/noise setEnergyDistributions energy_distrib
35
36 # D E A D T I M E
37 /gate/digitizer/cutLowSingles/insert deadtime
38 /gate/digitizer/cutLowSingles/deadtime/setDeadTime 2.2 mus
39 /gate/digitizer/cutLowSingles/deadtime/setMode paralysable
40 /gate/digitizer/cutLowSingles/deadtime/chooseDTVolume module
41
42 # H I G H E N E R G Y C U T
43 /gate/digitizer/name cutSingles
44 /gate/digitizer/insert singleChain
45 /gate/digitizer/cutSingles/setInputName cutLowSingles
46 /gate/digitizer/cutSingles/name highThresh
47 /gate/digitizer/cutSingles/insert thresholder
48 /gate/digitizer/cutSingles/highThresh/setThreshold 350. keV
49 /gate/digitizer/cutSingles/insert upholder
50 /gate/digitizer/cutSingles/upholder/setUphold 700. keV
51
52 /gate/digitizer/cutSingles/name deadtime_cassette
53 /gate/digitizer/cutSingles/insert deadtime
54 /gate/digitizer/cutSingles/deadtime_cassette/setDeadTime 0.55 mus
55 /gate/digitizer/cutSingles/deadtime_cassette/setMode nonparalysable
56 /gate/digitizer/cutSingles/deadtime_cassette/chooseDTVolume cassette
57 /gate/digitizer/cutSingles/name deadtime_group
58 /gate/digitizer/cutSingles/insert deadtime
59 /gate/digitizer/cutSingles/deadtime_group/setDeadTime 0.250 mus
60 /gate/digitizer/cutSingles/deadtime_group/setMode nonparalysable
61 /gate/digitizer/cutSingles/deadtime_group/chooseDTVolume group
62
63
64 # C O I N C I S O R T E R 65
65 /gate/digitizer/Coincidences/setInputName cutSingles
66 /gate/digitizer/Coincidences/setOffset 0. ns
67 /gate/digitizer/Coincidences/setWindow 24. ns
68 /gate/digitizer/Coincidences/minSectorDifference 3
69
70 /gate/digitizer/name delayedCoincidences
71 /gate/digitizer/insert coincidenceSorter
72 /gate/digitizer/delayedCoincidences/setInputName cutSingles
73 /gate/digitizer/delayedCoincidences/setOffset 100. ns
74 /gate/digitizer/delayedCoincidences/setWindow 24. ns
75 /gate/digitizer/delayedCoincidences/minSectorDifference 3
76
77 /gate/digitizer/name finalCoinc
78 /gate/digitizer/insert coincidenceChain
79 /gate/digitizer/finalCoinc/addInputName delay
80 /gate/digitizer/finalCoinc/addInputName Coincidences
81 /gate/digitizer/finalCoinc/usePriority true
82 /gate/digitizer/finalCoinc/insert deadtime
83 /gate/digitizer/finalCoinc/deadtime/setDeadTime 60 ns
84 /gate/digitizer/finalCoinc/deadtime/setMode nonparalysable
85 /gate/digitizer/finalCoinc/deadtime/conserveAllEvent true

86 /gate/digitizer/finalCoinc/insert buffer
87 /gate/digitizer/finalCoinc/buffer/setBufferSize 32 B
88 /gate/digitizer/finalCoinc/buffer/setReadFrequency 14.45 MHz
89 /gate/digitizer/finalCoinc/buffer/setMode 0

Lines 1 to 15: The branch named "Singles" contains the result of applying the adder, readout, blurring, and
threshold (50 keV) modules.

Lines 17 to 20: A new branch (line 18) is defined, named "cutLowSingles" (line 17), which follows the
"Singles" branch in terms of data flow (line 19).

Lines 21 to 35: Two distributions are created, which will be used for defining a background noise. The first
distributions, named energy_distribution (line 23) is a Gaussian centered on 450 keV and of 30 keV standard
deviation, while the second one is an exponential distribution with a power of 7.57 \mu s. These two
distributions are used to add noise. The energy distribution of this source of noise is Gaussian, whileThe
exponential distribution represents the distribution of time interval between two consecutive noise events
(lines 32-34).

Lines 37 to 40: A paralysable (line 39) dead time of 2.2 \mu s is applied on the resulting signal+noise events.

Lines 43 to 62: Another branch (line 44) named "cutSingles" (line 43) is defined. This branch contains a
subset of the "cutLowSingles" branch (line 45) (after dead-time has been applied), composed of those events
which pass through the 350 keV/700 keV threshold/uphold window (lines 46-50). In addition, the events
tallied in this branch must pass the two dead-time cuts (lines 52 to 61) after the energy window cut.

Lines 65 to 68: The "default" coincidence branch consists of data taken from the output of the high threshold
and two dead-time cuts ("cutSingles") (line 65). At this point, a 24 ns window with no delay is defined for
this coincidence sorter.

Lines 70 to 75: A second coincidence branch is defined (line 71), which is named "delayedCoincidences".
This branch takes its data from the same output ("cutSingles"), but is defined by a delayed coincidence
window of 24 ns, and a 100 ns delay (line 73).

Lines 77 to 89: The delayed and the prompts coincidence lines are grouped (lines 79-80). Between two
coincidences coming from these two lines and occuring within a given event, the priority is set to the
delayed line, since it is inserted before the prompt line, and the priority is used (line 81). A non-paralysable
dead time of 60 ns is applied on the delayed+prompt coincidences (lines 82-85). If more than one
coincidence occur inside a given event, the dead time can kill all of them or none of them, depending on the
arrival time of the first one. As a consequence, if a delay coincidence is immediately followed by a prompt
coincidence due to the same photon, then, the former will not hide the latter (line 85). Finally, a memory
buffer of 32 coincidences, read at a frequency of 14.45 MHz, in an event-by-event basis (line 89) is applied
to the delayed+prompt sum (lines 86-89).

Digitizer optimization
In GATE standard operation mode, primary particles are generated by the source manager, and then
propagated through the attenuating geometry before generating hits in the detectors, which feed into the
digitizer chain. While this operation mode is suited for conventional simulations, it is inefficient when trying
to optimize the parameters of the digitizer chain. In this case, the user needs to compare the results obtained
for different sets of digitizer parameters that are based upon the same series of hits. Thus, repeating the
particle generation and propagation stages of a simulation is unnecessary for tuning the digitizer setting.

For this specific situation, GATE offers an operation mode dedicated to digitizer optimization, known as
DigiGATE. In this mode, hits are no longer generated: instead, they are read from a hit data-file (obtained
from an initial GATE run) and are fed directly into the digitizer chain. By bypassing the generation and
propagation stages, the computation speed is significantly reduced, thus allowing the user to compare
various sets of digitizer parameters quickly, and optimize the model of the detection electronics. DigiGATE
is further explained in chapter 13.

Angular Response Functions (ARFs) to speed-up single photon
(planar and SPECT) simulations
The ARF is a function of the incident photon direction and energy and represents the probability that a
photon will either interact with or pass through the collimator, and be detected at the intersection of the
photon direction vector and the detection plane in an energy window of interest.

The use of ARF can significantly speed up planar or SPECT simulations. The use of this functionality
involves 3 steps.

Calculation of the data needed to derive the ARF tables

In this step, the data needed to generate the ARF tables are computed from a rectangular source located at
the center of FOV. The SPECT head is duplicated twice and located at roughly 30 cm from the axial axis.

The command needed to compute the ARF data is:

/gate/systems/SPECThead/arf/setARFStage generateData

The ARF data are stored in ROOT format as specified by the GATE command output:

/gate/output/arf/setFileName testARFdata

By default the maximum size of a ROOT file is 1.8 Gbytes. Once the file has reached this size, ROOT
automatically closes it and opens a new file name testARFdata_1.root. When this file reaches 1.8 Gb, it is
closed and a new file testARFdata_2.root is created etc.

A template macro file is provided in the folder /examples/example_ARF/ generateARFdata.mac which
illustrates the use of the commands listed before.

Computation of the ARF tables from the simulated data

Once the required data are stored in ROOT files, the ARF tables can be calculated and stored in a binary file:

COMPUTE THE ARF TABLES FROM ARF DATA
#
/gate/systems/SPECThead/arf/setARFStage computeTables

The digitizer parameters needed for the computation of teh ARF table are defined by:

DIGITIZER PART OF THE ARF SENSITIVE DETECTOR
#

/gate/systems/SPECThead/ARFTables/setEnergyDepositionThreshHold 328. keV
/gate/systems/SPECThead/ARFTables/setEnergyDepositionUpHold 400. keV
/gate/systems/SPECThead/ARFTables/setEnergyResolution 0.10
/gate/systems/SPECThead/ARFTables/setEnergyOfReference 140. keV

In this example, we shot photons with 364.5 keV as kinetic energy. We chose an energy resolution of 10% @
140 keV and the energy window was set to [328-400] keV. The simulated energy resolution at an energy
Edep will be calculated by:

 where Edep is the photon deposited energy.

If we want to discard photons which deposit less than 130 keV, we may use:

/gate/systems/SPECThead/setEnergyDepositionThreshHold 130. keV

The ARF tables depend strongly on the distance from the detector to the source used in the previous step.
The detector plane is set to be the half-middle plan of the detector part of the SPECT head. In our example,
the translation of the SPECT head was 34.5 cm along the X direction (radial axis), the detector was 2 cm
wide along X and its center was located at x = 1.5 cm with respect to the SPECThead frame. This is what we
call the detector plane (x = 1.5 cm) so the distance from the source to the detector plane is 34.5 + 1.5 = 36
cm.

DISTANCE FROM SOURCE TO DETECTOR PLANE
TAKEN TO BE THE PLANE HALF-WAY THROUGH THE CRYSTAL RESPECTIVELY
TO THE SPECTHEAD FRAME
here it is 34.5 cm + 1.5 cm
#
/gate/systems/SPECThead/ARFTables/setDistanceFromSourceToDetector 36 cm

The tables are then computed from a text file which contains information regarding the incident photons
called ARFData.txt which is provided in the release folder /examples/example_ARF:

NOW WE ARE READY TO COMPUTE THE ARF TABLES
#
/gate/systems/SPECThead/ARFTables/ComputeTablesFromEnergyWindows ARFData.txt

The text file reads like this:

this file contains all the energy windows computed during first step
with their associated root files
it has to be formatted the following way
[Emin,Emax] is the energy window of the incident photons
the Base FileName is the the name of the root files name.root, name_1.root name_2.root ...
the number of these files has to be given as the last parameter
#
enter the data for each energy window
Incident Energy Window: Emin - Emax (keV) | Root FileName | total file number
 0. 365. test1head 20

Here we have only one incident energy window for which we want to compute the corresponding ARF
tables. The data for this window are stored inside 20 files whose base file name is test1head. These ARF data
files were generated from the first step and were stored under the names of test1head.root, test1head_1.root
... test1head_19.root.

Finally the computed tables are stored to a binary file:

/gate/systems/SPECThead/ARFTables/list
SAVE ARF TABLES TO A BINARY FILE FOR PRODUCTION USE
/gate/systems/SPECThead/ARFTables/saveARFTablesToBinaryFile ARFSPECTBench.bin

Use of the ARF tables

The command to tell GATE to use ARF tables is:

/gate/systems/SPECThead/arf/setARFStage useTables

The ARF sensitive detector is attached to the SPECThead:

/gate/SPECThead/attachARFSD

These tables are loaded from binary files with:

/gate/systems/SPECThead/ARFTables/loadARFTablesFromBinaryFile ARFTables.bin

Multi-system approaches: how to use more than one system in one
simuation set-up ?
Singles arriving from different systems request different treatment in the digitizer. So we have to use
multiple digitizer chains and to separate between theses singles according to their systems.

SystemFilter: definition

The systemFilter module separates between the singles coming from systems. This module have one
parameter which is the name of the system.

Command line

/gate/digitizer/SingleChain/insert systemFilter
/gate/digitizer/SingleChain/systemFilter/selectSystem SystemName

SingleChain is the singles chain, Singles by default, and SystemName is the name of the selected system.
Note that the natural order of this module is the first.

Example: modification in your Digitizer macro file

Suppose that we have two systems with the names “cylindricalPET” and “Scanner_1”, so to select singles in
cylindricalPET system we use:

/gate/digitizer/Singles/insert systemFilter
/gate/digitizer/Singles/systemFilter/selectSystem cylindricalPET

Note we didn't insert a singles chain because we have the default chain “Singles”, on the other side for “
Scanner_1” we to insert a new singles chain “Singles_S1 ”:

/gate/digitizer/name Singles_S1
/gate/digitizer/insert singleChain

Then we insert the system filter.

/gate/digitizer/Singles_S1/insert systemFilter
/gate/digitizer/Singles_S1/systemFilter/selectSystem Scanner_1

How to manage the coincidence sorter with more than one system: the Tri
Coincidence Sorter approach

Description:

The aim of this module is to obtain the coincidence between coincidence pulses and singles of another
singles chain (between TEP camera and scanner for example). In this module we search the singles, of the
concerned singles chain, which are in coincidence with the coincidence pulses according to a time window.
In fact, this module, from the point of view of the code, is coincidence pulses processor. So we have a
coincidence chain as input with a singles chain. We have also to define a time window to search the
coincident coincidence-singles within this window. We test the time difference between the average time of
the tow singles of the coincidence pulse and the time of every single of the singles chain in question. We
have as output of this module two trees of ROOT: one tree contain the coincidences which have at first one
coincident single with every one of them. The second tree contain the coincident singles and it is generated
automatically with name of coincidence tree+”CSingles”. For example if we call the coincidence “triCoinc”,
so the name of the singles tree will be “ triCoincCSingles”. This singles tree contain the same branches as
any singles tree with an additional branch named “triCID” from (tri coincidence ID) and it has the same
value for all singles which are in coincidence with one coincidence pulse.

Strategy:

In this module we store the singles event by event in a singles buffer that have a semi-constant size that the
user can adjust. When we have a coincidence pulse we compare between the average time of this
coincidence pulse and the time of each single pulse in the buffer. When we have coincident singles with the
coincidence pulse, we store them in two trees as mentioned above.

Commands and example:

Define the classical coincidence sorter applied on the cylindrical PET system:

/gate/digitizer/Coincidences/setWindow 30. ns

Define now a "coincidenceChain" where you will plug the first coincidence sorter (named 'Coincidences' in
that case):

/gate/digitizer/name TriCoinc

/gate/digitizer/insert coincidenceChain
/gate/digitizer/TriCoinc/addInputName Coincidences

Finally, we cal the 'triCoincProcessor' module and we plug on it the second system which define in that case
by the 'Singles_S1' chain:

/gate/digitizer/TriCoinc/insert triCoincProcessor
/gate/digitizer/TriCoinc/triCoincProcessor/setSinglesPulseListName Singles_S1
/gate/digitizer/TriCoinc/triCoincProcessor/setWindow 15 ns
/gate/digitizer/TriCoinc/triCoincProcessor/setSinglesBufferSize 40

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Digitizer_and_readout_parameters"

This page was last modified on 8 February 2016, at 12:44.

Users Guide V7.2:Data output
From GATE collaborative documentation wiki

Table of Contents
The ASCII output
The Binary output
The Root output
The ROOT Online plotter
Interfile output of projection set
Sinogram output
Ecat7 output
LMF output
Image CT output

Data output is a key point for a software intended to be used for various applications, in various scientific
communities. In GATE, there are several types of output format, which can be enabled. By default all
outputs are disabled. And moreover there is no default output file name. You _must_ give a file name,
otherwise the output module will be automatically disabled. The following chapter describes the various
output formats, such as ASCII, Root, Interfile, LMF, and ECAT.

The ASCII output

Introduction

The GateToASCII class of GATE enables the ASCII file output, which is the easiest possible output. It
allows you to process your raw data with your own tools. On the other hand, this output is not compressed
and the output files are very large.

If the ASCII files are not needed for analysis, it is strongly recommended not using this output to speed up
the simulation and save space.

How to enable this output in your macro?

All the output commands

/gate/output/...

must always be written after the initialization line.

As in most of the output modules of GATE, you can enable ASCII output files for Hits, Singles (at the end
of the digitizer chain), Coincidences, but also for Singles after the different steps of the digitizer chain.

As a first step, enable the ASCII output and give an output file name:

/gate/output/ascii/enable
/gate/output/ascii/setFileName test

In your macro, the different flags should be set to 1:

enable ascii output for hits
/gate/output/ascii/setOutFileHitsFlag 1
#
enable ascii output for Singles (end of digitizer chain)
/gate/output/ascii/setOutFileSinglesFlag 1
#
enable ascii output for coincidences
/gate/output/ascii/setOutFileCoincidencesFlag 1
#
enable ascii output for singles (after a digitizer module)
/gate/output/ascii/setOutFileSingles< name of the digitizer module >Flag 1

The names of the digitizer module are : Adder, Readout, Spblurring, Blurring, Thresholder, Upholder. Their
actions are explained in Users Guide V7.2:Digitizer and readout parameters.

How to disable this output in your macro?

This output, as for all output is disabled by default, but if it is enabled, some ASCII files will be created,
namely: gateHits.dat, gateSingles.dat, gateRun.dat. In addition, if coincidences are processed in the
simulation, the file gateCoincidences.dat will be generated. To disable these ASCII files which can be large,
the macro should contain the following lines:

/gate/output/ascii/setOutFileHitsFlag 0
/gate/output/ascii/setOutFileSinglesFlag 0
/gate/output/ascii/setOutFileCoincidencesFlag 0

Only the file gateRun.dat which contain the number of decay per run will then be created.

Description of the ASCII file content

In all files, the units are :

MeV (energy)
mm (position)
s (time)
deg (angle)

Hits file (gateHits.dat)

Each line is a hit and the columns represent :

Column 1 : ID of the run (i.e. time-slice)
Column 2 : ID of the event
Column 3 : ID of the primary particle whose descendant generated this hit
Column 4 : ID of the source which emitted the primary particle
Columns 5 to N+4: Volume IDs at each level of the hierarchy of a system, so the number of columns
depends on the system used.

For cylindricalPET system N=6 :

Column 5 : ID of volume attached to the "base" level of the system

Column 6 : ID of volume attached to the "rsector" level of the system
Column 7 : ID of volume attached to the "module" level of the system
Column 8 : ID of volume attached to the "submodule" level of the system
Column 9 : ID of volume attached to the "crystal" level of the system
Column 10 : ID of volume attached to the "layer" level of the system

For SPECTHead system N=3 :

Column 5 : ID of volume attached to the "base" level of the system
Column 6 : ID of volume attached to the "crystal" level of the system
Column 7 : ID of volume attached to the "pixel" level of the system
Column N+5 : Time stamp of the hit
Column N+6 : Energy deposited by the hit (which may be given as a percentage of the initial particle)
Column N+7 : Range of particle which has generated the hit
Column N+8, N+9 ,N+10 : XYZ position of the hit in the world referential
Column N+11 : Geant4 code of the particle which has generated the hit (11 for Electrons & 22 for
Photons)
Column N+12 : ID of the particle which has generated the hit
Column N+13 : ID of the mother of the particle which has generated the hit
Column N+14 : ID of the photon giving the particle which has generated the hit
Column N+15 : Number of Compton interactions in phantoms before reaching the detector
Column N+16 : Number of Rayleigh interactions in phantoms before reaching the detector
Column N+17 : Name of the process which has generated the hit
Column N+18 : Name of the last volume where a Compton effect occurred
Column N+19 : Name of the last volume where a Rayleigh effect occurred

For the next sections, the system will be set as a cylindricalPET system, so that the number of lines
concerning the Volume ID of each level will always be 5.

Singles files (gateSingles.dat)

Each line is a single and the columns are :

Column 1 : ID of the run (i.e. time-slice)
Column 2 : ID of the event
Column 3 : ID of the source
Column 4, 5, 6 : XYZ position of the source in world referential
Column 7 to 12 : Volume IDs*(cf. columns 5-10 of sec 11.)
Column 13 : Time stamp of the single
Column 14 : Energy deposited by the single
Column 15 to 17 : XYZ position of the single in the world referential
Column 18 : Number of Compton interactions in phantoms before reaching the detector
Column 19 : Number of Compton interactions in detectors before reaching the detector
Column 20 : Number of Rayleigh interactions in phantoms before reaching the detector
Column 21 : Number of Rayleigh interactions in detectors before reaching the detector
Column 22 : Name of the phantom where a Compton effect occursed
Column 23 : Name of the phantom where a Rayleigh effect occured

Coincidences files (gateCoincidences.dat)

Each line is a coincidence created with two singles and the columns are :

Column 1 : ID of the run (i.e. time-slice) (first single)

Column 2 : ID of the event (first single)
Column 3 : ID of the source (first single)
Column 4 to 6 : XYZ position of the source in world referential (first single)
Column 7 : Time stamp (first single)
Column 8 : Deposited energy (first single)
Column 9 to 11 : XYZ position in the world referential (first single)
Column 12 to 17 : volume IDs* (cf. Users Guide V7.2:Data output#Description of the ASCII file
content) (first single)
Column 18 : Number of Compton interactions in phantoms before reaching the detector (first single)
Column 19 : Number of Compton interactions in detectors before reaching the detector (first single)
Column 20 : Number of Rayleigh interactions in phantoms before reaching the detector (first single)
Column 21 : Number of Rayleigh interactions in detectors before reaching the detector (first single)
Column 22 : Scanner axial position (first single)
Column 23 : Scanner angular position (first single)
Column 24 : ID of the run (i.e. time-slice) (second single)
Column 25 : ID of the event (second single)
Column 26 : ID of the source (second single)
Column 27 to 29 : XYZ position of the source in world referential (second single)
Column 30 : Time stamp (second single)
Column 31 : Energy deposited (second single)
Column 32 to 34 : XYZ position in the world referential (second single)
Column 35 to 40 : volume IDs.

The number of different volumeIDs depends on the complexity of the system geometry (6 IDs for
cylindricalPET system, 3 for ecat system, ...). Then, the number of column of your ASCII file is not
constant, but system-dependent.

Column 41 : Number of Compton interactions in phantoms before reaching the detector (second
single)
Column 42 : Number of Compton interactions in detectors before reaching the detector (second
single)
Column 41 : Number of Rayleigh interactions in phantoms before reaching the detector (second
single)
Column 42 : Number of Rayleigh interactions in detectors before reaching the detector (second single)
Column 45 : Scanner axial position (second single)
Column 46 : Scanner angular position (second single)

Selection of the variables in Singles/Coincidences ASCII output

The user can select with a macro command which variables he/she wants in the ASCII file. The mechanism
is based on a mask with a mask, i.e. a series of 0/1, one for each variable. By default all variables are
enabled, but one can choose to enable only some of the variables listed in 10.4.1. One example is:

/gate/output/ascii/setCoincidenceMask 1 0 1 0 1 1
/gate/output/ascii/setSingleMask 0 0 1 1

Note: the VolumeID variables are enabled/disabled together, as a group. The component of the 3D vectors,
instead, like the positions (components x,y,z), are enabled/disabled one by one.

Large files: automatic file swap for the ASCII output

When a user defined limit is reached by the Coincidence or Single ASCII output file, by default Gate closes

the file and opens another one with the same name but a suffix _1 (and then _2, and so on). By default the
file limit is set to 2000000000 bytes. One can change the number of bytes with a command like

/gate/output/ascii/setOutFileSizeLimit 30000

If the value is < 10000, no file swapping is made (to avoid creating thousands of files by mistake).

For example, if one does not have any limit in the Operating System, one can put the number to 0, and there
will be only one large (large) file at the end.

In case of high statistics applications, one might consider enabling only the ROOT output (see #The Root
output), which contains the same information as the ASCII one, but automatically compressed and ready for
analysis.

What is the file gateRun.dat ?

This file is the list of the number of decays generated by the source for each run (one by line). The Output
manager is called for each event, even if the particle(s) of the decay do not reach the detector. Note that the
number of processed decays can be slighly different from the expected number where A is
the activity and Δt is the time of the acquisition, due to the random character of the decay which governs the
event generation (Poisson law). Gate generates the time delay from the previous event, if it is out of the time
slice it stops the event processing for the current time slice and if needed it starts a new time slice.

The Binary output

Introduction

The GateToBinary class of GATE enables the Binary file output, which is the easiest possible output. It
allows you to process your raw data with your own tools. On the other hand, this output is not compressed
and the output files are very large.

If the binary files are not needed for analysis, it is strongly recommended not using this output to speed up
the simulation.

How to enable this output in your macro?

All the output commands

/gate/output/...

must always be written after the initialization line.

As in most of the output modules of GATE, you can enable binary output files for Hits, Singles (at the end of
the digitizer chain), Coincidences, but also for Singles after the different steps of the digitizer chain.

As a first step, enable the binary output and give an output file name:

/gate/output/binary/enable /gate/output/binary/setFileName test

In your macro, the different flags should be set to 1:

enable binary output for hits
/gate/output/binary/setOutFileHitsFlag 1
#
enable binary output for Singles (end of digitizer chain)
/gate/output/binary/setOutFileSinglesFlag 1
#
enable binary output for coincidences
/gate/output/binary/setOutFileCoincidencesFlag 1
#
enable binary output for singles (after a digitizer module)
/gate/output/binary/setOutFileSingles< name of the digitizer module >Flag 1

The names of the digitizer module are : Adder, Readout, Spblurring, Blurring, Thresholder, Upholder. Their
actions are explained in Users Guide V7.2:Digitizer and readout parameters.

How to disable this output in your macro?

This output, as for all output is disabled by default, but if it is enabled, some binary files will be created,
namely: gateHits.bin, gateSingles.bin, gateRun.bin. In addition, if coincidences are processed in the
simulation, the file gateCoincidences.bin will be generated. To disable these binary files which can be large,
the macro should contain the following lines:

/gate/output/binary/setOutFileHitsFlag 0
/gate/output/binary/setOutFileSinglesFlag 0
/gate/output/binary/setOutFileCoincidencesFlag 0

Only the file gateRun.bin which contain the number of decay per run will then be created.

Description of the bin file content

In all files, the units are :

MeV (energy)
mm (position)
s (time)
deg (angle)

Hits file (gateHits.bin)

Each line is a hit and the columns represent :

Column 1 : ID of the run (i.e. time-slice) (4-bytes, G4int)
Column 2 : ID of the event (4-bytes, G4int)
Column 3 : ID of the primary particle whose descendant generated this hit (4-bytes, G4int)
Column 4 : ID of the source which emitted the primary particle (4-bytes, G4int)
Columns 5 to N+4: Volume IDs at each level of the hierarchy of a system, so the number of columns
depends on the system used.

For cylindricalPET system N=6 :

Column 5 : ID of volume attached to the "base" level of the system (4-bytes, G4int)
Column 6 : ID of volume attached to the "rsector" level of the system (4-bytes, G4int)
Column 7 : ID of volume attached to the "module" level of the system (4-bytes, G4int)
Column 8 : ID of volume attached to the "submodule" level of the system (4-bytes, G4int)

Column 9 : ID of volume attached to the "crystal" level of the system (4-bytes, G4int)
Column 10 : ID of volume attached to the "layer" level of the system (4-bytes, G4int)

For SPECTHead system N=3 :

Column 5 : ID of volume attached to the "base" level of the system (4-bytes, G4int)
Column 6 : ID of volume attached to the "crystal" level of the system (4-bytes, G4int)
Column 7 : ID of volume attached to the "pixel" level of the system (4-bytes, G4int)
Column N+5 : Time stamp of the hit (8-bytes, G4double)
Column N+6 : Energy deposited by the hit (8-bytes, G4double)
Column N+7 : Range of particle which has generated the hit (8-bytes, G4double)
Column N+8, N+9 ,N+10 : XYZ position of the hit in the world referential (8-bytes, G4double)
Column N+11 : Geant4 code of the particle which has generated the hit (4-bytes, G4int)
Column N+12 : ID of the particle which has generated the hit (4-bytes, G4int)
Column N+13 : ID of the mother of the particle which has generated the hit (4-bytes, G4int)
Column N+14 : ID of the photon giving the particle which has generated the hit (4-bytes, G4int)
Column N+15 : Number of Compton interactions in phantoms before reaching the detector (4-bytes,
G4int)
Column N+16 : Number of Rayleigh interactions in phantoms before reaching the detector (4-bytes,
G4int)
Column N+17 : Name of the process which has generated the hit (8-bytes, G4string)
Column N+18 : Name of the last volume where a Compton effect occured (8-bytes, G4string)
Column N+19 : Name of the last volume where a Rayleigh effect occured (8-bytes, G4string)

For the next sections, the system will be set as a cylindricalPET system, so that the number of lines
concerning the Volume ID of each level will always be 5.

Singles files (gateSingles.bin)

Each line is a single and the columns are :

Column 1 : ID of the run (i.e. time-slice) (4-bytes, G4int)
Column 2 : ID of the event (4-bytes, G4int)
Column 3 : ID of the source (4-bytes, G4int)
Column 4, 5, 6 : XYZ position of the source in world referential (8-bytes, G4double)
Column 7 to 12 : Volume IDs*(cf. columns 5-10 of sec 11.) (4-bytes, G4int)
Column 13 : Time stamp of the single (8-bytes, G4double)
Column 14 : Energy deposited by the single (8-bytes, G4double)
Column 15 to 17 : XYZ position of the single in the world referential (8-bytes, G4double)
Column 18 : Number of Compton interactions in phantoms before reaching the detector (4-bytes,
G4int)
Column 19 : Number of Compton interactions in detectors before reaching the detector (4-bytes,
G4int)
Column 20 : Number of Rayleigh interactions in phantoms before reaching the detector (4-bytes,
G4int)
Column 21 : Number of Rayleigh interactions in detectors before reaching the detector (4-bytes,
G4int)
Column 22 : Name of the phantom where a Compton effect occursed (8-bytes, G4string)
Column 23 : Name of the phantom where a Rayleigh effect occured (8-bytes, G4string)

Coincidences files (gateCoincidences.bin)

Each line is a coincidence created with two singles and the columns are :

Column 1 : ID of the run (i.e. time-slice) (first single) (4-bytes, G4int)
Column 2 : ID of the event (first single) (4-bytes, G4int)
Column 3 : ID of the source (first single) (4-bytes, G4int)
Column 4 to 6 : XYZ position of the source in world referential (first single) (8-bytes, G4double)
Column 7 : Time stamp (first single) (8-bytes, G4double)
Column 8 : Deposited energy (first single) (8-bytes, G4double)
Column 9 to 11 : XYZ position in the world referential (first single) (8-bytes, G4double)
Column 12 to 17 : volume IDs* (cf. Users Guide V7.2:Data output#Description of the ASCII file
content) (first single) (8-bytes, G4double)
Column 14 : (8-bytes, G4double)
Column 15 to 17 : (4-bytes, G4int)
Column 18 : Number of Compton interactions in phantoms before reaching the detector (first single)
(4-bytes, G4int)
Column 19 : Number of Compton interactions in detectors before reaching the detector (first single)
(4-bytes, G4int)
Column 20 : Number of Rayleigh interactions in phantoms before reaching the detector (first single)
(4-bytes, G4int)
Column 21 : Number of Rayleigh interactions in detectors before reaching the detector (first single)
(4-bytes, G4int)
Column 22 : Scanner axial position (first single) (8-bytes, G4double)
Column 23 : Scanner angular position (first single) (8-bytes, G4double)
Column 24 : ID of the run (i.e. time-slice) (second single) (4-bytes, G4int)
Column 25 : ID of the event (second single) (4-bytes, G4int)
Column 26 : ID of the source (second single) (4-bytes, G4int)
Column 27 to 29 : XYZ position of the source in world referential (second single) (8-bytes, G4double)
Column 30 : Time stamp (second single) (8-bytes, G4double)
Column 31 : Energy deposited (second single) (8-bytes, G4double)
Column 32 to 34 : XYZ position in the world referential (second single) (8-bytes, G4double)
Column 35 to 40 : volume IDs. (8-bytes, G4double)
Column 37 : (8-bytes, G4double)
Column 38 to 40 : (4-bytes, G4int)

The number of different volumeIDs depends on the complexity of the system geometry (6 IDs for
cylindricalPET system, 3 for ecat system, ...). Then, the number of column of your ASCII file is not
constant, but system-dependent.

Column 41 : Number of Compton interactions in phantoms before reaching the detector (second
single) (4-bytes, G4int)
Column 42 : Number of Compton interactions in detectors before reaching the detector (second
single) (4-bytes, G4int)
Column 41 : Number of Rayleigh interactions in phantoms before reaching the detector (second
single) (4-bytes, G4int)
Column 42 : Number of Rayleigh interactions in detectors before reaching the detector (second single)
(4-bytes, G4int)
Column 45 : Scanner axial position (second single) (8-bytes, G4double)
Column 46 : Scanner angular position (second single) (8-bytes, G4double)

Selection of the variables in Singles/Coincidences binary output

The user can select with a macro command which variables he/she wants in the binary file. The mechanism
is based on a mask with a mask, i.e. a series of 0/1, one for each variable. By default all variables are
enabled, but one can choose to enable only some of the variables listed in 10.4.1. One example is:

/gate/output/binary/setCoincidenceMask 1 0 1 0 1 1
/gate/output/binary/setSingleMask 0 0 1 1

Note: the VolumeID variables are enabled/disabled together, as a group. The component of the 3D vectors,
instead, like the positions (components x,y,z), are enabled/disabled one by one.

Large files: automatic file swap for the binary output

When a user defined limit is reached by the Coincidence or Single binary output file, by default Gate closes
the file and opens another one with the same name but a suffix _1 (and then _2, and so on). By default the
file limit is set to 2000000000 bytes. One can change the number of bytes with a command like

/gate/output/binary/setOutFileSizeLimit 30000

If the value is < 10000, no file swapping is made (to avoid creating thousands of files by mistake).

For example, if one does not have any limit in the Operating System, one can put the number to 0, and there
will be only one large (large) file at the end.

In case of high statistics applications, one might consider enabling only the ROOT output (see #The Root
output), which contains the same information as the binary one, but automatically compressed and ready for
analysis.

What is the file gateRun.bin ?

This file is the list of the number of decays generated by the source for each run (one by line). The Output
manager is called for each event, even if the particle(s) of the decay do not reach the detector. Note that the
number of processed decays can be slighly different from the expected number where A is
the activity and Δt is the time of the acquisition, due to the random character of the decay which governs the
event generation (Poisson law). Gate generates the time delay from the previous event, if it is out of the time
slice it stops the event processing for the current time slice and if needed it starts a new time slice.

The Root output

How to enable this output in your macro ?

If you need to generate the root output file, this can be done by adding the following lines in the macro :

/gate/output/root/enable
/gate/output/root/setFileName FILE_NAME

which will provide you with a FILE_NAME.root file.

By default, this root file will contain : 2 Trees for SPECT systems (Hits and Singles) or 3 Trees for PET
systems (Coincidences, Hits and Singles) in which several variables are stored.

When launching ROOT with the command:

root file.root

root [1] TBrowser t

you can easily see the content of your ROOT data file.

How to disable this output in your macro ?

If needed, and for a matter of file size, you could choose not to generate all trees. In this case, just add the
following lines in your macro :

/gate/output/root/setRootHitFlag 0
/gate/output/root/setRootSinglesFlag 0
/gate/output/root/setRootCoincidencesFlag 0
/gate/output/root/setRootNtupleFlag 0

By turning to 1 (or 0) one of this tree flag, you will fill (or not) the given tree.

In a debug mode, it can be useful to store in a Tree the informations after the action of one particular module
of the digitizer chain. The following flags exist to turn on or off these intermediate Trees.

/gate/output/root/setOutFileSinglesAdderFlag 0
/gate/output/root/setOutFileSinglesReadoutFlag 0
/gate/output/root/setOutFileSinglesSpblurringFlag 0
/gate/output/root/setOutFileSinglesBlurringFlag 0
/gate/output/root/setOutFileSinglesThresholderFlag 0
/gate/output/root/setOutFileSinglesUpholderFlag 0

And if you want to disable the whole ROOT output, just do not call it, or use the following command:

/gate/output/root/disable

How to merge Root files ?

Two or more Root files can be merged into one single file by using the hadd utility on the command line:

hadd result.root file1.root file2.root ... filen.root

How to analyze the Root output

You can either plot the variables directly from the browser, or through a macro file (e.g. called
PET_Analyse.C). Analysis macros are available in the directory examples/example_ROOT_Analyse.

In this case, type :

root [0] .x PET_Analyse.C

You may also use the root class called MakeClass
(http://root.cern.ch/download/doc/ROOTUsersGuideHTML/ch12s21.html) which generates a skeleton class
designed to loop over the entries of a tree from your root file. In the location of your output.root file, you
launch root and do the following:

root [0] TChain chain(“Hits”); <<<=== the name of the tree of interest: example with Hits.
root [1] chain.Add(“/home/…location_of_the_root_output_file/output1.root”);
root [1] chain.Add(“/home/…location_of_the_root_output_file/output2.root”);
root [2] chain.MakeClass(“MyAnalysis”); <<<==== name of your root macro will be MyAnalysis.C

MakeClass() will create 2 files: MyAnalysis.h and MyAnalysis.C

These two files are automatically generated. In the header file (MyAnalysis.h) all the root tree variables are
declared and in the MyAnalysis.C file you will find a template that allows you to loop over your events.

You can run this code in root by doing:

Root > .L MyAnalysis.C
Root > MyAnalysis t
Root > t.Loop();

You can modify/improve the code MyAnalysis.C for example by writing a counter as shown below:

void MyAnalysis::Loop()
{
if (fChain == 0) return;
Long64_t nentries = fChain->GetEntriesFast();
Long64_t nbytes = 0, nb = 0;
Int_t num_INITIAL = 0;
Int_t num_DETECTED = 0;

// Loop over photons
for (Long64_t jentry=0; jentry Long64_t ientry = LoadTree(jentry);
if (ientry < 0) break;
nb = fChain->GetEntry(jentry); nbytes += nb;
num_INITIAL++; // number of photons in the tree
if(HitPos_Y == 0.3) { ==> here you need to apply some cuts which are analysis dependant….. }
num_DETECTED++;
}
}// End Loop over the entries.

// You can print some results on the screen:
std::cout<<"***************************** Results *****************************" << std::endl;
std::cout<<"Number of Generated Photons: " << num_INITIAL << std::endl;
std::cout<<"Number of Detected Photons: " << num_DETECTED << std::endl;

Please consult the ROOT Homepage: http://root.cern.ch/ for more details.

If you look at the directory gate/examples/example_OPTICAL, you will see a macro named
DrawBranches.C — If you modify it so it points to your root file, and execute it in root: root> .x
DrawBranches.C — It will draw/plot all the branches of your tree into a postscript file. That might be
helpful.

N.B: ‘Duplicated’ branches seem to be a root thing. Looking at:http://root.cern.ch/drupal/content/root-
version-v5-34-00-patch-release-notes, It seems that this is fixed in TTree since root version v5-34-11
(october 2013).

How to convert a root file to a text file for further analysis ?

This link shows how to convert the data in a root-file to a .txt. file for further analysis:
http://root.cern.ch/phpBB3/viewtopic.php?f=3&t=16590

// Name this file "dump.cxx" and use as:
// root [0] .x dump.cxx(); > dump.txt
// Produces "dump.txt" and "dump.xml" files.

void dump(const char *fname = "dna.root",
const char *nname = "ntuple”) // <—- If needed, change this line.
{
if (!fname || !(*fname) || !nname || !(*nname)) return; // just a precaution

TFile *f = TFile::Open(fname, "READ");
if (!f) return; // just a precaution

TTree *t; f->GetObject(nname, t);
if (!t) { delete f; return; } // just a precaution

// See:
// http://root.cern.ch/root/html/TTreePlayer.html#TTreePlayer:Scan
// http://root.cern.ch/root/html/TTree.html#TTree:Scan
t->SetScanField(0);
t->Scan("*");

// See:
// http://root.cern.ch/root/html/TObject.html#TObject:SaveAs
t->SaveAs("dump.xml");
// t->SaveAs(TString::Format("%s.xml", nname));

delete f; // no longer needed (automatically deletes "t")
}

The ROOT Online plotter
Along with standard output for post-processing (such as root, LMF, ecat), GATE provides a very convenient
tool called the online plotter, which enables online display of several variables. This online analysis is
available even if the root output is disabled in your macro, for instance because the user does not want to
save a large root file. But Gate have to be compiled with certain options to have this output available.

The online plotter can be easily used with the following macro :

/gate/output/plotter/enable
/gate/output/plotter/showPlotter
/gate/output/plotter/setNColumns 2
/gate/output/plotter/setPlotHeight 250
/gate/output/plotter/setPlotWidth 300
/gate/output/plotter/addPlot hist Ion_decay_time_s
/gate/output/plotter/addPlot hist Positron_Kinetic_Energy_MeV
/gate/output/plotter/addPlot tree Singles comptonPhantom
/gate/output/plotter/addPlot tree Coincidences energy1
/gate/output/plotter/listPlots

The command:

addPlot hist NAME_of_the_histo

plots an histogram previously defined in GATE, and:

addPlot tree NAME_of_the_tree NAME_of_the_variable

plots a variable from one of the GATE trees.

The command setNColumns sets the number of display windows to be used.

Figure 10.2 presents an example of online plotter, obtained with the above macro.

Figure 10.2: The Online Plotter

Interfile output of projection set

Description

The Interfile format is especially suited for acquisition protocol using a multiple headed rotating gamma
camera. The total description of the Interfilev3.3 format can be found on the Interfile website:
http://www.medphys.ucl.ac.uk/interfile/index.htm.

When images are acquired in multiple windows (e.g. energy windows, time windows, multiple heads), the
images are recorded according to the order in which the corresponding keys are defined. Thus if multiple
energy windows are used, all image data for the first window must be given first, followed by the image data
for the second window, etc. This loop structure is defined in the Interfile syntax by the use of the 'for'
statement. Two files are created when using the Interfile/Projection output: your_file.hdrand your_file.sin.
The header file contains all information about the acquisition while the your_file.sin file contains the binary
information. An example of such a header is:

!INTERFILE :=
!imaging modality := nucmed
!version of keys := 3.3
date of keys := 1992:01:01
;
!GENERAL DATA :=
data description := GATE simulation

!data starting block := 0
!name of data file := your_file.sin
;
!GENERAL IMAGE DATA :=
!type of data := TOMOGRAPHIC
!total number of images := 64
study date := 2003:09:15
study time := 11:42:34
imagedata byte order := LITTLEENDIAN
number of energy windows := 1
;
!SPECT STUDY (general) :=
number of detector heads := 2
;
!number of images/energy window := 64
!process status := ACQUIRED
!number of projections := 32
!matrix size [1] := 16
!matrix size [2] := 16
!number format := UNSIGNED INTEGER
!number of bytes per pixel := 2
!scaling factor (mm/pixel) [1] := 1
!scaling factor (mm/pixel) [2] := 1
!extent of rotation := 180
!time per projection (sec) := 10
study duration (elapsed) sec : = 320
!maximum pixel count : = 33
;
!SPECT STUDY (acquired data) :=
!direction of rotation := CW
start angle := 0
first projection angle in data set := 0
acquisition mode := stepped
orbit := circular
camera zoom factor := 1
;
!number of images/energy window := 64
!process status := ACQUIRED
!number of projections := 32
!matrix size [1] := 16
!matrix size [2] := 16
!number format := UNSIGNED INTEGER
!number of bytes per pixel := 2
!scaling factor (mm/pixel) [1] := 1
!scaling factor (mm/pixel) [2] := 1
!extent of rotation := 180
!time per projection (sec) := 10
study duration (elapsed) sec : = 320
!maximum pixel count : = 36
;
!SPECT STUDY (acquired data) :=
!direction of rotation := CW
start angle := 180
first projection angle in data set := 180
acquisition mode := stepped
orbit := circular
camera zoom factor := 1
;
GATE GEOMETRY :=
head x dimension (cm) := 30
head y dimension (cm) := 80
head z dimension (cm) := 70
head material := Air
head x translation (cm) := -25
head y translation (cm) := 0
head z translation (cm) := 0
crystal x dimension (cm) := 1.5
crystal y dimension (cm) := 60
crystal z dimension (cm) := 50
crystal material := NaI
;
GATE SIMULATION :=
number of runs := 32
;
!END OF INTERFILE :=

Use

To use the Interfile output, the following lines have to be added to the macro:

PROJECTION
/gate/output/projection/enable
/gate/output/projection/setFileName your_file
/gate/output/projection/projectionPlane YZ
/gate/output/projection/pixelSizeY 1. mm
/gate/output/projection/pixelSizeX 1. mm
/gate/output/projection/pixelNumberY 16
/gate/output/projection/pixelNumberX 16

The projectionPlane should be chosen correctly, according to the simulated experiment. The pixelSize and
the pixelNumber are always described in a fixed XY-axes system.

Read .sin with ImageJ

There are several way of editing an interfile image with ImageJ.

The Interfile Output is available as a ".sin" and ".hdr" files directly into the folder of concern. Several
software may be used to read the data, among them the software ImageJ is quite often used. The procedure
to use is the following:

Once ImageJ is opened, click on the thumb File and select Import -> Raw. A window appears into which
the name.sin can be selected.

Once the image is selected, select the following information:

Image Type: 16-bit Unsigned

Width & Height & Number of Images can be read into the .hdr files if unknown.

Tick the case: Little Endian byte Order

Tick the case: Use Virtual Stack if the data had multiple projection windows.

However one must be careful with this editing. Some users complained that the image in tomographic views
provided image in stack in a strange fashion.

A second way to read Interfile images is to use this plugin with ImageJ Interfile Plugin Decoder
(http://www.med.harvard.edu/jpnm/ij/plugins/Interfile.html) . The advantage is that the plugin seeks all the
information in the .hdr files by itself.

Read .sin with IDL

For a planar projection, the image projections created with GATE may also be read with IDL with the
function Read_Binary"". In the example below, the projection name.sin has to be inserted into the IDL main
folder. The image size must be detailed into the READ_BINARY function which might lead to a false image
if not specified properly. If in doubt, the image size information is to be obtained in the .hdr files.

IDL> file = 'name.sin'

IDL> SizeIMageX = 128

IDL> SizeImageZ = 128

IDL> data=READ_BINARY(file,DATA_DIMS=
[SizeIMageX,SizeIMageY],DATA_TYPE=12,ENDIAN='Little')

Sinogram output
If the ecat system or the ecatAccel system have been selected (see Users Guide V7.2:Defining a
system#Ecat), the sinogram output module can be enable with the following commands:

For the ecat system:

/gate/output/sinogram/enable
/gate/output/sinogram/setFileName MySinogramFileName

For the ecatAccel system:

/gate/output/sinoAccel/enable
/gate/output/sinoAccel/setFileName MySinogramFileName

Using this format, the coincident events are stored in an array of 2D sinograms. There is one 2D sinogram
per pair of crystal-rings. For example, for the ECAT EXACT HR+ scanner (32 crystal-rings) from CPS
Innovations (Knoxville, TN, U.S.A.), there are 1024 2D sinograms. The number of radial bins is specified
using the command:

For the ecat system:

/gate/output/sinogram/RadialBins 256

For the ecatAccel system:

/gate/output/sinoAccel/RadialBins 256

There is a one-to-one correspondence between the sinogram bins and the lines-of-response (LOR) joining
two crystals in coincidence. The sinogram bin assignment is not based on the true radial and azimuthal
position of the LOR, but on the indexing of the crystals. This means that the sinograms are subject to
curvature effects. By default, all coincident events are recorded, regardless of their origin (random, true
unscattered, or true scattered coincidence). It is possible to discard random events:

For the ecat system:

/gate/output/sinogram/TruesOnly true

For the ecatAccel system:

/gate/output/sinoAccel/TruesOnly true

In the trues, both scattered and unscattered coincidences are included. There is no simulation of a delayed
coincidence window. At the beginning of each run, the content of the 2D sinograms is reset to zero. At the
end of each run, the contents of the 2D sinograms can be optionally written to a raw file (one per run). This
feature has to be enabled :

For the ecat system:

/gate/output/sinogram/RawOutputEnable

For the ecatAccel system:

/gate/output/sinoAccel/RawOutputEnable

Three files are written per run:

the raw data (unsigned short integer) in MySinogramFileName.ima;
a mini ASCII header in MySinogramFileName.dim;
an information file in MySinogramFileName.info.

MySinogramFileName.dim contains the minimal information required to read the flat file MySinogram-
FileName.ima'.

Here is an example with the default setting for the ECAT EXACT HR+ scanner:

288 288 1024
-type U16
-dx 1.0
-dy 1.0
-dz 1.0

The first line specifies the size of the matrix: 1024 2D sinograms (third coordinate) with 288 radial bins (first
coordinate) and 288 azimuthal bins (second coordinate). The second line specifies the format: unsigned short
integer. The next three lines specify the size of each bin; there are set arbitrarly to 1.

'MySinogramFileName.info describes the ordering of the 2D sinograms in the flat file MySinogram-
FileName.ima.

Here is an example with the default setting for the ECAT EXACT HR+ scanner:

1024 2D sinograms
[RadialPosition;AzimuthalAngle;AxialPosition;RingDifference]
RingDifference varies as 0,+1,-1,+2,-2, ...,+31,-31
AxialPosition varies as |RingDifference|,...,62-|RingDifference| per increment of 2
AzimuthalAngle varies as 0,...,287 per increment of 1
RadialPosition varies as 0,...,287 per increment of 1
Date type : unsigned short integer (U16)

Each 2D sinogram is characterized by the two crystal-rings in coincidence ring1 and ring2 . Instead of
indexing the 2D sinograms by ring1 and ring2 , they are indexed by the ring difference ring2 − ring1 and the
axial position ring2 + ring1:

for RingDifference = 0,+1,-1,+2,-2,....,+31,-31
 for AxialPosition = |RingDifference|; AxialPosition <= 62-|RingDifference|; AxialPosition += 2
 ring_1 = (AxialPosition - RingDifference)/2
 ring_2 = RingDifference + (AxialPosition - RingDifference)/2
 Write Sinogram(ring_1;ring_2)

In addition to the sinogram output module, there is a conversion of the 2D sinograms to an ecat7 formatted
3D sinogram in the ecat7 output module. This 3D sinogram is then written to an ecat7 matrix file.

Ecat7 output
If and only if both the ecat system and the sinogram output module have been selected, the ecat7 output
module can be enable using the following commands:

/gate/output/ecat7/enable
/gate/output/ecat7/setFileName MySinogramFile

This module writes the content of the 2D sinograms defined in the sinogram output module to an ecat7
formatted matrix scan file, the native file format from CPS Innovations (Knoxville (TN), U.S.A.) for their
ECAT scanner family. Due to the large size of a full 3D PET data set, the data set size is reduced before
writing it to disk. Therefore it is not possible to go back from an ecat7 formatted 3D sinogram to the original
2D sinograms set.

Installation

In order to compile the ecat7 output module of Gate, the ecat library written at the PET Unit of the Catholic
University of Louvain-la-Neuve (UCL, Belgium) is required. It can be downloaded from their web site:
http://www.topo.ucl.ac.be/ecat_Clib.html

Three files are required: the library file libecat.a and the two header files matrix.h and machine_indep.h.

To compile Gate with the ecat7 library without changing the env_gate.csh and GNUmakefile files, the en-
vironment variable ECAT7_HOME has to be defined and set to the name of the home directory where the
ecat7 library is installed (for example, /usr/local/ecat7). In this ecat7 home directory, two subdirectories
should be created: lib and include. The header files are put in the ${ECAT7_HOME}/include directory. For
each system, a specific subdirectory named after the G4SYSTEM environment variable value should be
created in the ${ECAT7_HOME}/lib directory. The corresponding library file libecat.a has to be located in
this ${ECAT7_HOME}/lib/${G4SYSTEM} directory. The matrix.h file has to be modified to add the
declaration of the mh_update() function. The following line can be added in the "high level user functions"
part of matrix.h:

int mh_update(MatrixFile*);

Data reduction

The polar coordinate of a LOR is approximately defined by the crystal-ring index difference between the 2
rings in coincidence. For a scanner with N crystal rings, the total number of polar samples is given by 2 × N
− 1. Usually, on ecat systems, not all crystal-ring differences are recorded. Only absolute crystal-ring
differences up to a given value, referred to as the maximum ring difference, are recorded. In Gate, this
maximum ring difference is defined using:

/gate/output/ecat7/maxringdiff 22

The value of the maximum ring difference should be smaller than N.

A polar mashing is applied to group 2D sinograms with adjacent polar coordinates. The size of this grouping
is called the span [reference]. Its minimum value is 3 and it should be an odd integer. The span value can be
set using:

/gate/output/ecat7/span 9

Figure 10.3: Michelogram for a 16 crystal-ring scanner

The Michelogram represented in Figure 10.3 graphically illustrates mashing in the polar coordinate for a 16
crystal-ring scanner with a maximum ring difference set to 12 and a span factor of 5, resulting to 5 polar
samples instead of 31. Each dot represents a 2D sinogram for a given pair of crystal-rings. The grouped 2D
sinograms are connected by diagonal lines.

By default, the maximum ring difference is set to N − 1 and the span factor to 3. After choosing a maximum
ring difference value MaxRingDiff, only certain span factors are possible as the resulting number of polar

samples must be an integer:

In addition to the polar mashing, the number of azimuthal samples can also be reduced from Nazi = Ncryst / 2
to Nazi / m where m is the mashing factor. The mashing factor can be set using;

/gate/output/ecat7/mashing 2

The default mashing value is 1.

Sinogram file

At the end of each run, a new 3D sinogram is written with an incremental frame indexing. For example, with
the following configuration:

/gate/application/setTimeSlice 60 s
/gate/application/setTimeStart 0 s
/gate/appication/setTimeStop 300 s

5 frames of 60 seconds each will be generated.

The ECAT code of the scanner model is specified by

/gate/output/ecat7/system 962

This information can be needed by some ecat7 based reconstruction routines.

It should be noted that not all fields of the main- or sub-header are filled. In particular, the
coincidence_sampling_mode field of the main-header is always set to Prompts and Delayed (1), regardless
of the value of the /gate/output/sinogram/TruesOnly tag.

For the scan sub-header, the value of the prompts field is correctly filled and the value of the delayed field is
set to the actual number of random coincidences, and not to the number of delayed coincidences (not
simulated).

The radial bin size in the scan sub-header is set to half the value of the crystal transverse sampling and does
not take into account the arc and depth-of-interaction (DOI) effects. After arc correction, the radial bin size
should be slightly increased to account for the DOI effect. Note that this correction is included in the
reconstruction software provided with theECAT scanners.

Figure 10.4: Increase of the radial bin size due to the DOI effect.

LMF output

Introduction

The Crystal Clear Collaboration has developed a List Mode Format (LMF) to store the data of ClearPET
prototypes. Monte Carlo data generated by GATE can also be stored under the same format using the class
GateToLMF. This format is only available for the cylindricalPET system (see Users Guide V7.2:Defining a
system) and GATE can only store single events.

Several tools enabling the reading of this format and the processing of events are implemented in the LMF
library. As an example, coincidences can be created from GATE single events. It is also possible to apply
different deadtimes, and even to generate sinograms in the Interfile format as used by the STIR library,
which implements several image reconstruction algorithms.

The LMF library and its documentation are available on the OpenGate web site.

Size of information to be stored in LMF.
Information Size (bytes/single) Real machines GATE

Time 8 YES YES

Energy 1 YES YES
detector ID 2 YES YES
PET's axial position 2 YES YES
PET's angular position 2 YES YES
run ID 4 NO YES
event ID 4 NO YES
source ID 2 NO YES
source XYZ Position 6 NO YES
global XYZ Position 6 NO YES
number of Compton in phantomSD 1 NO YES
number of Compton in crystalSD 1 NO YES

Usage

LMF data are composed of two files with the same base-name, but different extensions:

An ASCII file with a .cch extension contains general information about the scan and about the
scanner, like the scan duration, the sizes of the detectors, or the angular rotation speed.
A binary file with a .ccs extension contains headers, which set the topology of the scanner, followed
by fixed size records.

The user can generate these two output files automatically by using the macro scripting. Scripting also
allows to select the kind of information to be stored. All pieces of information are optional, except time,
which makes the ClearPET LMF quite versatile. Table 10.7.2 lists all options and memory requirements that
can be stored in the LMF event record when using the cylindricalPET system.

The binary output file size depends on its content. It amounts to 11 MB for 1 million single events stored
with their time, energy and detector ID for a small animal PET scanner including about 1500 crystals.

Macros commands (available only once initialisation has been performed) used to configure the LMF output
are:

/gate/output/lmf/enable

to enable LMF output.

/gate/output/lmf/disable

to disable LMF output (but it is disable by default).

/gate/output/lmf/setFileName myFirst

to set the LMF files name. Here the output files will be myFirst.ccs and myFirst.cch.

/gate/output/lmf/setDetectorIDBool 1

to store (1) or to not store (0) the detector ID.

/gate/output/lmf/setEnergyBool 1

to store (1) or to not store (0) the energy.

/gate/output/lmf/setGantryAxialPosBool 0

to store (1) or to not store (0) the axial position.

/gate/output/lmf/setGantryAngularPosBool 0

to store (1) or to not store (0) the angular position.

The following lines must always be included as they appear below with option set to 0:

/gate/output/lmf/setSourcePosBool 0
/gate/output/lmf/setNeighbourBool 0
/gate/output/lmf/setNeighbourhoodOrder 0
/gate/output/lmf/setCoincidenceBool 0

All information that is not available in real acquisitions is stored in a GateDigi record using the command:

/gate/output/lmf/setGateDigiBool 1

If the option 0 is used, the following commands are ignored

/gate/output/lmf/setComptonBool 1
/gate/output/lmf/setComptonDetectorBool 1

to store (1) or to not store (0) the number of Compton scattering that occured in a phantomSD and a
crystalSD.

/gate/output/lmf/setSourceIDBool 0

to store (1) or to not store (0) the source ID.

/gate/output/lmf/setSourceXYZPosBool 0

to store (1) or to not store (0) the source XYZ position.

/gate/output/lmf/setGlobalXYZPosBool 0

to store (1) or to not store (0) the real XYZ position.

The information regarding the gantry position, translation or rotation speed(s), or the position of the
eccentric rotation axis are automatically passed from the macro scripting to the LMF output.

/gate/output/lmf/setEventIDBool 1

to store (1) or to not store (0) the event ID.

/gate/output/lmf/setRunIDBool 1

to store (1) or to not store (0) the run ID.

Limitations

The LMF format was originally designed for the development of small animal PET scanners for which the
number of crystals is smaller than for clinical PET scanners. Consequently, the user should carefully read the
LMF specifications and make sure that this format allows him to model his scanner design. In particular, the
maximum number of sub-volumes in a volume (e.g. the maximum number of submodules in a module) is set
by the number of bits used to encode the sub-volume ID. The final ID encoding the position of an event has
to be stored on 16, 32, or 64 bits only.

Image CT output
The imageCT output is a binary matrix of float numbers that stores the simulated CT image and is produced
for each time slice.

The output is enabled by:

/gate/output/imageCT/enable

The output file name is set by:

/gate/output/imageCT/setFileName test

The output file name is "test_xxx.dat", where xxx is the corresponding time slice number.

In the case of the fast simulation mode, the number of pixels is set by:

/gate/output/imageCT/numPixelX 80
/gate/output/imageCT/numPixelY 80

In the case of VRT simulation mode (see Users Guide V7.2:Defining a system#CTscanner), the VRT K
factor is set by:

/gate/output/imageCT/vrtFactor 10

Finally the random seed can be defined using:

/gate/output/imageCT/setStartSeed 676567

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Data_output"

This page was last modified on 8 February 2016, at 12:40.

Users Guide V7.2:Generating and tracking optical photons
From GATE collaborative documentation wiki

Table of Contents
Optical Photon Generation
Optical System Definition
Defining material properties

Scintillation
Absorption
Mie/Rayleigh Scattering
Fluorescence
Boundary Processes

Defining surfaces
Detection of optical photons
Digitizer
Optical Imaging Simulation Outputs

Root tree
Projection set

EXAMPLE: Optical Imaging Simulation
Bibliography

 !!! Important if using Geant4.9.5 and Geant4.9.5.p01 !!!
All propertyvector in both Surface.xml and Materials.xml entries have to be given in increasing order of energy.

(see http://hypernews.slac.stanford.edu/HyperNews/geant4/get/opticalphotons/458/1/1.html)

Introduction
This chapter explains how Gate can be used to generate and track optical photons in order to investigate, for example, the energy
resolution or spatial resolution of detectors.

To use the optical photon capabilities of GATE, the GATE_USE_OPTICAL variable has to be set to ON in the configuration
process using ccmake.

Before discussing how to use the optical photon tracking, it has to be mentioned that there are a few disadvantages in using optical
transport. First, the simulation time will increase dramatically. For example, most scintillators used in PET generate in the order of
10,000 optical photons at 511 keV, which means that approximately 10,000 more particles have to be tracked for each annihilation
photon that is detected. Although the tracking of optical photons is relatively fast, a simulation with optical photon tracking can
easily be a factor thousand slower than one without. Finally, in order to perform optical simulations, many parameters are needed for
the materials and surfaces, some of which may be difficult to determine.

Optical Photon Generation

/gate/source/addSource Mysource gps
/gate/source/Mysource/gps/particle opticalphoton
/gate/source/Mysource/gps/energytype Mono
/gate/source/Mysource/gps/angtype iso

An optical photon with a wave length of 530nm corresponds to an optical photon of energy=2.34eV [approximation: 1240/E(eV) =
wavelength (nm)]:

/gate/source/Mysource/gps/monoenergy 2.34 eV

An optical photon which is not assigned a polarization at production may not be Rayleigh scattered:

/gate/source/Mysource/gps/polarization 1 0 0

Optical System
The GATE OpticalSystem is appropriate to model Optical Imaging systems. This system is defined in the following section of the
Users Guide: "OpticalSystem"
(http://wiki.opengatecollaboration.org/index.php/Users_Guide_V6.2:Defining_a_system#OpticalSystem) .

Defining material properties
The optical properties of materials are stored in a material property table. In this table each of the properties of a material is
identified by a name. There are two kinds of properties. The first are constant properties, these contain only one value. The second
are property vectors, these contain properties that depend on the energy of the optical photon. Such a vector is a list of energy-value
pairs.

The property tables for the materials used in a simulation are to be stored in a file separate from the material database. This makes it
easier to change the properties without having to change the material database. This file should be named Materials.xml. When
Gate reads in a material from the materials database, it also checks if the Materials.xml file contains a property table for this
material. If so, this table is read in and coupled to the material.

Scintillation

A scintillator is characterized by its photon emission spectrum. The scintillation follows an exponential decay with two time
constants, a fast and a slow one. The relative strength of the fast component FASTCOMPONENT as a fraction of total scintillation
yield is given by the YIELDRATIO. The emission spectra of both decays are given by the property vectors FASTCOMPONENT
and SLOWCOMPONENT and the time constants FASTTIMECONSTANT and SLOWTIMECONSTANT. These vectors
specify the probability that a photon with the given energy is emitted. The sum of each of the vectors should therefore be one.

In order to have scintillation in a material, the first parameter that has to be specified is the SCINTILLATIONYIELD (1/Mev,
1/keV), which gives the number of photons that is emitted per amount of energy absorbed, or, more precisely, it gives the
expectation value of this number, since the real number of emitted photons follows a normal distribution. The variance of this
normal distribution is RESOLUTION-SCALE times this expectation value. Thus, for example, when a gamma photon deposits E
amount of energy in the scintillator, N optical photons are emitted with an expectation value of μN = E . SCINTILLATIONYIELD

and a standard deviation of

The parameters RESOLUTIONSCALE can be calculated from the energy resolution of the scintillator. The energy resolutions
specified in the literature may contain contributions of electronic noise. The energy resolution needed to calculate the
RESOLUTIONSCALE should be the intrinsic energy resolution of the scintillator.

where R is the energy resolution (FWHM - Full width at half maximum) at energy E.

 <material name="LSO">
 <propertiestable>
 <property name="SCINTILLATIONYIELD" value="26000" unit="1/MeV"/>
 <property name="RESOLUTIONSCALE" value="4.41"/>
 <property name="FASTTIMECONSTANT" value="40" unit="ns"/>
 <property name="YIELDRATIO" value="1"/>
 <propertyvector name="FASTCOMPONENT" energyunit="eV">
 <ve energy="2.95167" value="1"/>
 </propertyvector>
 <propertyvector name="ABSLENGTH" unit="m" energyunit="eV">
 <ve energy="1.84" value="50"/>
 <ve energy="4.08" value="50"/>
 </propertyvector>
 <propertyvector name="RINDEX" energyunit="eV">
 <ve energy="1.84" value="1.82"/>
 <ve energy="4.08" value="1.82"/>
 </propertyvector>
 </propertiestable>
 </material>

Absorption

This process kills the particle. It requires the Material.xml properties filled by the user with the Absorption length ABSLENGTH
(average distance traveled by a photon before being absorbed by the medium).

 /gate/physics/addProcess OpticalAbsorption

Mie/Rayleigh Scattering

Mie Scattering is an analytical solution of Maxwell’s equations for scattering of optical photons by spherical particles. It is
significant only when the radius of the scattering object is of order of the wave length.The analytical expressions for Mie Scattering
are very complicated. One common approximation (followed by Geant4) made is called Henyey-Greenstein (HG). For small size
parameter (scattering particle diameter) regime the Mie theory reduces to the Rayleigh approximation.

 /gate/physics/addProcess OpticalRayleigh
 /gate/physics/addProcess OpticalMie

For Rayleigh or Mie scattering, we require the final momentum, initial polarization and final polarization to be in the same plane.
Mie/Rayleigh processes require material properties to be filled by the user with Mie/Rayleigh scattering length data:
MIEHG/RAYLEIGH, which is the average distance traveled by a photon before it is Mie/Rayleigh scattered in the medium. In the
case of the Mie scattering, the user also needs to provide parameters of the HG approximation: MIEHG_FORWARD (forward
anisotropy), MIEHG_BACKWARD (backward anisotropy), and MIEHG_FORWARD_RATIO (ratio between forward and
backward angles). Geant4 code allows the forward and backward angles to be treated separately. If your material characteristics
provides only one number for the anisotropy (= average cosine of the scattering angle), below is an example of how (part of) the
Materials.xml file could look like:

 <material name="Biomimic">
 <propertiestable>
 <propertyvector name="ABSLENGTH" unit="cm" energyunit="eV">
 <ve energy="1.97" value="0.926"/>
 <ve energy="2.34" value="0.847"/>
 </propertyvector>
 <propertyvector name="RINDEX" energyunit="eV">
 <ve energy="1.97" value="1.521"/>
 <ve energy="2.34" value="1.521"/>
 </propertyvector>
 <property name="MIEHG_FORWARD" value="0.62" />
 <property name="MIEHG_BACKWARD" value="0.62" />
 <property name="MIEHG_FORWARD_RATIO" value="1.0" />
 <propertyvector name="MIEHG" unit="cm" energyunit="eV">
 <ve energy="1.97" value="0.04"/>
 <ve energy="2.34" value="0.043"/>
 </propertyvector>
 </propertiestable>
 </material>

Fluorescence

Fluorescence is a 3 step process: The fluorophore is in an excited state after the absorption of an optical photon provided by an
external source (laser, lamp). The life time of the excited state is of order of 1-10ns during which the fluorophore interacts with its
environment and ends-up in a relaxed-excited state. The last step is the emission of a fluorescent photon which energy/wave length

is smaller(larger) than the one of the excitation optical photon.

Geant4 simulates the WaveLength Shifting (WLS) fibers that are used in High Energy Physics experiments. As an example, the
CMS hadronic EndCap calorimeter is made of scintillator tiles with WLS fibers embedded. These fibers collect/absorb blue light
produced in tiles and re-emit green light so that as much light reaches the PMTs. A new class in Gate has been implemented as a
physics builder class that inherits from the G4OpWLS class. The following command line enables the optical photon fluorescence:

 /gate/physics/addProcess OpticalWLS

Gate user needs to provide four parameters/properties to define the fluorescent material: RINDEX, WLSABSLENGTH,
WLSCOMPONENT and WLSTIMECONSTANT. The WLSABSLENGTH defines the fluorescence absorption length which is
the average distance travelled by a photon before it is absorbed by the fluorophore. This distance could be very small but probably
not set to 0 otherwise the photon will be absorbed immediately upon entering the fluorescent volume and fluorescent photon will
appear only from the surface. The WLSCOMPONENT describes the emission spectrum of the fluorescent volume by giving the
relative strength between different photon energies. Usually these numbers are taken from measurements (i.e. emission spectrum).
The WLSTIMECONSTANT defines the time delay between the absorption and re-emission.

Simulation of the Fluorescein [see http://en.wikipedia.org/wiki/Fluorescein]

We define the refractive index of the fluorophore’s environment (water or alcohol):
<material name="Fluorescein">
<propertiestable>
<propertyvector name="RINDEX" energyunit="eV">
<ve energy="1.0" value="1.4"/>
<ve energy="4.13" value="1.4"/>
</propertyvector>

We describe the fluorescein absorption length taken from measurements or literature as function of the photon energy:

The WLS process has an absorption spectrum and an emission spectrum. If these overlap then a WLS photon may in turn be
absorpted and emitted again. If you do not want that you need to avoid such overlap. The WLS process does not distinguish between
'original' photons and WLS photons.

<propertyvector name="WLSABSLENGTH" unit="cm" energyunit="eV">
<ve energy="3.19" value="2.81"/>
<ve energy="3.20" value="2.82"/>
<ve energy="3.21" value="2.81"/>
</propertyvector>

We describe the fluorescein Emission spectrum taken from measurements or literature as function of the photon energy:
<propertyvector name="WLSCOMPONENT" energyunit="eV">
<ve energy="1.771" value="0.016"/>
<ve energy="1.850" value="0.024"/>
<ve energy="1.901" value="0.040"/>
<ve energy="2.003" value="0.111"/>
<ve energy="2.073" value="0.206"/>
<ve energy="2.141" value="0.325"/>
<ve energy="2.171" value="0.413"/>
<ve energy="2.210" value="0.540"/>
<ve energy="2.250" value="0.683"/>
<ve energy="2.343" value="0.873"/>
<ve energy="2.384" value="0.968"/>
<ve energy="2.484" value="0.817"/>
<ve energy="2.749" value="0.008"/>
<ve energy="3.099" value="0.008"/>
</propertyvector>
<property name="WLSTIMECONSTANT" value="1.7" unit="ns"/>
</propertiestable>
</material>

Boundary Processes

When a photon arrives at a medium boundary its behavior depends on the nature of the two materials that join at that boundary.

 /gate/physics/addProcess OpticalBoundary

In the case of two dielectric materials, the photon can undergo total internal reflection, refraction or reflection, depending on the
photon’s wavelength, angle of incidence, and the refractive indices on both sides of the boundary. In the case of an interface between
a dielectric and a metal, the photon can be absorbed by the metal or reflected back into the dielectric.

Defining (or Not) the Surface

When simulating a perfectly smooth surface, the user doesn't have to provide a G4Surface. The only relevant property is the
refractive index (RINDEX) of the two materials on either side of the interface. Geant4 will calculate from Snell's Law the

probabilities of refraction and reflections. However, should the user want to include possible irregularities of the surface, e.g. surface
roughness that isn't specifically defined in the geometrical definition, then the user may want to provide probability options for
various reflection types. The UNIFIED model allows the user to control the radiant intensity of the surface: Specular lobe,
Specular spike, Backscatter spike (enhanced on very rough surfaces) and Reflectivity (Lambertian or diffuse distribution). The
sum of the four constants is constrained to unity. In Gate, the simulation model that is used by the boundary process is ALWAYS the
Geant4 UNIFIED model (see: source/geometry/src/GateSurface.cc). In that model, the probability of micro-facet normals that
populates the annulus of solid angle sin(α) dα is proportional to a Gaussian of sigmaalpha (σα) given in degrees. This parameter
defines the standard deviation of the Gaussian distribution of micro-facets around the average surface normal. In the case of a
perfectly polished surface, the normal used by the G4BoundaryProcess is the normal to the surface.

Defining surfaces

On this image, the photon travels through the surface between Volume1 and Volume2. To create a surface with the name Surface-
From-Volume1-To-Volume2 between the two volumes with the names Volume1 and Volume2, the following commands should be
used:

/gate/Volume2/surfaces/name Surface-From-Volume1-To-Volume2
/gate/Volume2/surfaces/insert Volume1

The surface between Volume1 and Volume2 is NOT the same surface as that between Volume2 and Volume1. When there is optical
transport in both directions, both surfaces should be created.

To load the surface properties stored under rough_teflon_wrapped in the Surface.xml file:

/gate/Volume2/surfaces/Surface-From-Volume1-To-Volume2/SetSurface rough_teflon_wrapped

An example of a surface definition looks like:

<surface name="rough_teflon_wrapped" type="dielectric_dielectric" sigmaalpha="0.1" finish="groundbackpainted">
 <propertiestable>
 <propertyvector name="SPECULARLOBECONSTANT" energyunit="eV">
 <ve energy="4.08" value="1"/>
 <ve energy="1.84" value="1"/>
 </propertyvector>
 <propertyvector name="RINDEX" energyunit="eV">
 <ve energy="4.08" value="1"/>
 <ve energy="1.84" value="1"/>
 </propertyvector>
 <propertyvector name="REFLECTIVITY" energyunit="eV">
 <ve energy="1.84" value="0.95"/>
 <ve energy="4.08" value="0.95"/>
 </propertyvector>
 <propertyvector name="EFFICIENCY" energyunit="eV">
 <ve energy="1.84" value="0"/>

 <ve energy="4.08" value="0"/>
 </propertyvector>
 </propertiestable>
</surface>

The attribute type can be either dielectric_dielectric or dielectric_metal, to model either a surface between two dielectrica or
between a dielectricum and a metal. The attribute sigma-alpha models the surface roughness and is discussed in the next section.
Finally, the attribute finish can have one of the following values: ground, polished, ground-back-painted, polished-back-painted,
ground-front-painted and polished-front-painted. It is therefore possible to cover the surface on the inside or outside with a coating
that reflects optical photons using Lambertian reflection. In case the finish of the surface is polished, the surface normal is used to
calculate the probability of reflection. In case the finish of the surface is ground, the surface is modeled as consisting of small micro-
facets. The surface normals of the facets are distributed around the average surface normal, following a normal distribution with
standard deviation σα, which can be specified in degrees in the attribute sigmaalpha. When an optical photon reaches a surface, a
random angle α is drawn for the micro facet that is hit by the optical photon. Using the angle of incidence of the optical photon with
respect to this micro facet and the refractive indices of the two media, the probability of reflection is calculated.

In case the optical photon is reflected, four kinds of reflection are possible. The probabilities of the first three are given by the
following three property vectors:

SPECULARSPIKECONSTANT gives the probability of specular reflection about the average surface normal

SPECULARLOBECONSTANT gives the probability of specular reflection about the surface normal of the micro facet

BACKSCATTERCONSTANT gives the probability of reflection in the direction the optical photon came from

LAMBERTIAN (diffuse) reflection occurs when none of the other three types of reflection happens. The probability of Lambertian
reflection is thus given by one minus the sum of the other three constants.

When the photon is refracted, the angle of refraction is calculated from the surface normal (of the average surface for polished and
of the micro facet for rough) and the refractive indices of the two media.

When an optical photon reaches a painted layer, the probability of reflection is given by the property vector REFLECTIVITY. In
case the paint is on the inside of the surface, the refractive indices of the media are ignored, and when the photon is reflected, it
undergoes Lambertian reflection.

When the paint is on the outside of the surface, whether the photon is reflected on the interface between the two media is calculated
first, using the method described in the previous section. However, in this case the refractive index given by the property vector
RINDEX of the surface is used. When the photon is refracted, it is reflected using Lambertian reflection with a probability
REFLECTIVITY. It then again has to pass the boundary between the two media. For this, the method described in the previous
section is used again and again, until the photon is eventually reflected back into the first medium or is absorbed by the paint.

A dielectric_dielectric surface may have a wavelength dependent property TRANSMITTANCE. If this is specified for a surface it
overwrites the Snell's law's probability. This allows the simulation of anti-reflective coatings.

Detection of optical photons
Optical photons can be detected by using a dielectric-metal boundary. In that case, the probability of reflection should be given by
the REFLECTIVITY property vector. When the optical photon is reflected, the UNIFIED model is used to determine the reflection
angle. When it is absorbed, it is possible to detect it. The property vector EFFICIENCY gives the probability of detecting a photon
given its energy and can therefore be considered to give the internal quantum efficiency. Note that many measurements of the
quantum efficiency give the external quantum efficiency, which includes the reflection: external quantum efficiency = efficiency*(1-
reflectivity).

The hits generated by the detection of the optical photons are generated in the volume from which the optical photons reached the

surface. This volume should therefore be a sensitive detector.

Digitizer
The hits generated in the sensitive detector are first processed by analysis. Unfortunately analysis is quite slow when there are a
large number of hits, as is the case when there is optical transport. Therefore, an alternative has been created that is faster ans is
therefore called fastanalysis.

/gate/output/analysis/disable

/gate/output/fastanalysis/enable

Switching both on has no effect on the results, but only affects the speed of the simulation. After processing the hits with one of the
analysis routines, the singles should be created from the hits. This is usually done using the opticaladder which adds all hits
generated by optical photons. In this way, it is possible to create a digitizer chain containing the singles generated by optical
photons.

/gate/digitizer/Singles/insert opticaladder
/gate/digitizer/Singles/insert readout
/gate/digitizer/Singles/readout/setDepth your_detector_readout_level

Digitizer modules like threshold or uphold can be used (see "Thresholder & Upholder"
(http://wiki.opengatecollaboration.org/index.php/Users_Guide_V6.2:Digitizer_and_readout_parameters#Thresholder_.26_Upholder)
). This is crucial when you do a fluorescence experience for example. If you want to detect only fluorescent photons you need to
apply an energy cut (upholder) in order to discard high energy photons (non-fluorescent photons have higher energy than fluorescent
photons).

/gate/digitizer/Singles/insert upholder
/gate/digitizer/Singles/upholder/setUphold 2.0 eV
/gate/digitizer/Singles/insert thresholder
/gate/digitizer/Singles/thresholder/setThreshold 1.0 eV

The projection (see Projection set) associated to this digitizer records only photons corresponding to the defined energy window.
The projection image is therefore the fluorescence image.

Optical Imaging Simulation Outputs

Root output

When working with optical photons, an additional ROOT tree is created: OpticalData. You can decide to fill this tree or not by using
the following command:

 /gate/output/root/setRootOpticalFlag 0 or 1

OpticalData tree is generated with the following information:

CrystalLastHitEnergy CrystalLastHitPos_X CrystalLastHitPos_Y CrystalLastHitPos_Z
Energy and Positions of the photon last hit in the Crystal (Detected photon position)

PhantomLastHitEnergy PhantomLastHitPos_X PhantomLastHitPos_Y PhantomLastHitPos_Z
Energy and Positions of the photon last hit in the Phantom

NumCrystalWLS
Number of Fluorescence processes per event(photon) in the Crystal

NumPhantomWLS
Number of Fluorescence processes per event(photon) in the Phantom

NumScintillation

Number of Scintillation processes per event(photon) in the Crystal

CrystalProcessName PhantomProcessName
List of process names that occured in the Crystal or in the Phantom

MomentumDirectionx MomentumDirectiony MomentumDirectionz
Optical photon momentum direction

Binary output of projection set

In order to create a projection set (see Interfile output of projection set) using the Optical System in GATE, the following lines have
to be added to the macro:

/gate/output/projection/enable
/gate/output/projection/setFileName your_name
/gate/output/projection/projectionPlane XY
/gate/output/projection/pixelSizeX 0.105 cm
/gate/output/projection/pixelSizeY 0.105 cm
/gate/output/projection/pixelNumberX 100
/gate/output/projection/pixelNumberY 100

The result of projection set is saved in a binary file (.bin). A header file (.hdr) is also provided with the following information:

 !INTERFILE :=
 !imaging modality := optical imaging
 ;
 !GENERAL DATA :=
 data description := GATE simulation
 !name of data file := ./OpticalSimulationProjection.bin
 ;
 !GENERAL IMAGE DATA :=
 !type of data := OPTICAL
 !total number of images := 1
 ;
 !OPTICAL STUDY (general) :=
 number of detector heads := 1
 ;
 !number of images divided by number of energy window := 1
 projection matrix size [1] := 100
 projection matrix size [2] := 100
 projection pixel size along X-axis (cm) [1] := 0.105
 projection pixel size along Y-axis (cm) [2] := 0.105
 !number of projections := 1
 !extent of rotation := 360
 !time per projection (sec) := 1
 ;
 ;GATE GEOMETRY :=
 ;Optical System x dimension (cm) := 10.5
 ;Optical System y dimension (cm) := 10.5
 ;Optical System z dimension (cm) := 2
 ;Optical System material := Air
 ;Optical System x translation (cm) := 0
 ;Optical System y translation (cm) := 0
 ;Optical System z translation (cm) := 0
 ;
 ;Optical System LEVEL 1 element is crystal :=
 ;Optical System crystal x dimension (cm) := 10.5
 ;Optical System crystal y dimension (cm) := 10.5
 ;Optical System crystal z dimension (cm) := 1
 ;Optical System crystal material := Air
 ;
 ;Optical System LEVEL 2 element is pixel :=
 ;Optical System pixel x dimension (cm) := 2
 ;Optical System pixel y dimension (cm) := 2
 ;Optical System pixel z dimension (cm) := 1
 ;Optical System pixel material := Air
 ;
 !END OF INTERFILE :=

EXAMPLE: Optical Imaging Simulation
In the GATE software you will find simple examples of a bioluminescence/fluorescence experiment. All macros are located in

example/example_OPTICAL. In addition, a ROOT macro [DrawBranches.C] is available and draws all branches of the OpticalData
tree into a postscript file.

The optical imaging system is composed of an array of pixels, an electronic board and an angular aperture that limits the range of
angles over which the optical system can accept light. The phantom is composed of a box of water and two layers made of either
water, hypodermis or epidermis. In case of a bioluminescence experiment, the tumor is described as a voxelized source of optical
photons and is positioned under the inner layer of the phantom. In case of a fluorescence experiment, we assigned the Rhodamine B
fluorophore to each voxel of a voxelized tumor and positioned it under the inner layer of the phantom. The fluorophore is excited by
two external beam light sources emitting optical photons towards the tumor.

These two experiments are available in example/example_OPTICAL through the following macros: bioluminescence.mac and
fluorescence.mac. The voxelized source or phantom is available in example/example_OPTICAL/voxelized-source-phantom with an
attenuation file and an optical-flux file. These macros will generate a root output file with the OpticalData tree enabled and a binary
file which corresponds to the GATE ProjectionSet on the XY plane (i.e detection plane). Using the root macros
MakeBioluminescencePlots.C and MakeFluorescencePlots.C, you can read the root output file and draw the
bioluminescent/fluorescent light that is detected by the optical system. In case of the fluorescence experiment, two plots are drawn:
all detected light (any wavelength) and the fluorescent light (wavelength cut). The projection binary file (.bin and .hdr) can be
viewed directly using Anatomist or Imagej. In case of the fluorescence experiment, an Upholder (uphold cut) was applied through
the digitizer so the binary image illustrates the fluorescent light.

The Materials.xml file is updated with several tissues properties at specific wavelengths (from literature): brain, kidney, epidermis
and hypodermis but also with the emission spectra of the Fluorescein and Rhodamine B.

Bibliography
The NIST XCOM (NIST-XCOM (http://www.nist.gov/pml/data/xcom/index.cfm)): Photon Cross Sections Database gives
attenuation coefficients. The Database Search Form is available directly through this link Database Search Form
(http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html) .

A Review of the Optical Properties of Biological Tissues, IEEE J. Quantum Electronics, 26, 2166-2185 (1990) (W. F. Cheong,
S. A. Prahl, and A. J. Welch). Updated by Wai-Fung Cheong. Further additions by Lihong Wang and Steven L. Jacques.
August 6, 1993 (http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=64354) - IEEE Journal of Quantum Electronics, Vol. 26,
Issue 12, pp. 2166 - 2185

Optical Absorption of Water (http://omlc.ogi.edu/spectra/water/index.html) with all currently available data (presented in
terms of wavelength and absorption coefficient) - Scott Prahl, Oregon Medical Laser Center.

Optical Brain Imaging in Vivo: Techniques and Applications from Animal to Man. (E. M. C. Hillman)
(http://www.ncbi.nlm.nih.gov/pubmed/17994863) - J. Biomed. Opt. 2007 Sep-Oct;12(5):051402

Refractive Index Measurement of Acute Rat Brain Tissue Slices using Optical Coherence Tomography (J. Sun, S. J. Lee, L.
Wu, M. Sarntinoranont and H. Xie) (http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-2-1084) - Optics Express, Vol.
20, Issue 2, pp. 1084-1095 (2012)

In Vivo Optical Reflectance Imaging of Spreading Depression Waves in Rat Brain with and without Focal Cerebral Ischemia
(S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng and Q. Luo) (http://www.ncbi.nlm.nih.gov/pubmed/16822052) - J. Biomed.
Opt. 2006 May-Jun;11(3):34002

Brain Refractive Index Measured in Vivo with High-NA Defocus-Corrected Full-Field OCT and Consequences for Two-
Photon Microscopy (J. Binding, J. Ben Arous, J-F. Leger, S. Gigan, C. Boccara and L. Bourdieu)
(http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4833) - Optics Express, Vol. 19, Issue 6, pp. 4833-4847 (2011)

Contribution of the Mitochondrial Compartment to the Optical Properties of the Rat Liver: a Theoretical and Practical
Approach (B. Beauvoit, T. Kitai and B. Chance) (http://www.ncbi.nlm.nih.gov/pubmed/7696489) - Biophys. J. 1994
Dec;67(6):2501-10

Optical Properties of Native and Coagulated human Liver Tissue and Liver Metastases in the Near Infrared Range (C. T.
Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Muller and H. J. Buhr)
(http://www.ncbi.nlm.nih.gov/pubmed/9829430) - Lasers Surg. Med. 1998;23(4):194-203

In Vivo Determination of the Optical Properties of Muscle with Time-Resolved Reflectance using a Layered Model (A.
Kienle and T. Glanzmann) (http://www.ncbi.nlm.nih.gov/pubmed/10588278) - Phys. Med. Biol. 1999 Nov;44(11):2689-702

Optical Properties of Skin, Subcutaneous and Muscle Tissues: a Review (A. N. Bashkatov, E. A. Genina and V. V. Tuchin)
(http://www.worldscientific.com/doi/abs/10.1142/S1793545811001319) - J. Innov. Opt. Health Sci. 04, 9 (2011)

Determination of the Optical Properties of Rat (Heart) Tissue (A. Singh1, A. E. Karsten, R. M. Smith and G. van Niekerk)
(http://researchspace.csir.co.za/dspace/handle/10204/4039) - 2010 European Cells & Materials Ltd

In Vitro Double-Integrating-Sphere Optical Properties of Tissues between 630 and 1064nm (J. F. Beek†, P. Blokland, P.
Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg and M. J. C. van Gemert)
(http://www.ncbi.nlm.nih.gov/pubmed/9394410) - Phys. Med. Biol. 42 (11) 1997 2255-61

Simpson R, Kohl M, Essenpreis M and Cope M 1998 Near-Infrared optical properties of ex vivo human skin and
subcutaneous tissues measured using the Monte Carlo inversion technique Phys. Med. Biol. 43 2465-2478

Baran T M, Wilson J D, Mitra S, Yao J L, Messing E M, Waldman D L and Foster T H 2012 Optical property measurements
establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney J. Biomed.
Opt. 17 (9) 098002

Rolfe P 2000 Brain - In vivo near-infrared spectroscopy Annu. Rev. Biomed. Eng. 2 715-754

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Generating_and_tracking_optical_photons"

This page was last modified on 8 February 2016, at 12:16.

Users Guide V7.2:Architecture of the simulation for
radiotherapy
From GATE collaborative documentation wiki

Main rules
GATE simulations are based on the execution of scripted commands (Users Guide V7.2:Getting started) gathered in
macros. We describe here the must important points which are specific to define simulation for radiotherapy
applications. The general set-up should be generally divided into 6 steps as follows:

1. Verbosity and Visualization (Users Guide V7.2:Visualization)
2. Geometry (Users Guide V7.2:Defining a geometry) - Phantom and material management (Users Guide

V7.2:Voxelized Source and Phantom)
3. Actor and output management (Users Guide V7.2:Readout parameters for Radiotherapy applications: Actors)
4. Physics (Users Guide V7.2:Setting up the physics)
5. Sources (Users Guide V7.2:Voxelized Source and Phantom)
6. Experiment - How to run the simulation ? (Users Guide V7.2:How to run Gate)

/gate/application/setTotalNumberOfPrimaries [Nparticle]
/gate/application/start

The first 4 steps correspond to the PreInit mode of GEANT4 whereas the last 3 occur after the initialization of the
simulation. The first 4 steps are validated by the GEANT4 command:

/gate/run/initialize

Once this phase is completed, the sources can be inserted in the setup and the simulation can be run.

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Architecture_of_the_simulation_for_radiotherapy"

This page was last modified on 8 February 2016, at 12:47.

Users Guide V7.2:Readout parameters for Radiotherapy
applications: Actors
From GATE collaborative documentation wiki

Table of Contents
General Purpose

Add an actor
Attach to a volume
Save output
3D matrix actor (Image actor)

Actor list
Simulation statistic
Electromagnetic (EM) properties
Dose measurement
New image format : MHD
Kill track
Stop on script
Track length
Energy spectrum
Production and stopping particle position
Secondary production
Delta kinetic energy
Number of particles entering volume
Q-value
CrossSectionProductionActor
Biological Washout: WashOutActor
Fluence Actor
TLE and seTLE
Fixed Forced Detection CT
PromptGammaTLEActor

Filters
Filter on particle type
Filter on particle ID
Filter on volume
Filter on energy
Filter on direction

Actors are tools which allow to interact with the simulation. They can collect information during the simulation, such as energy
deposit, number of particles created in a given volume, etc. They can also modify the behavior of the simulation. Actors use hooks
in the simulation : run (begin/end), event(begin/end), track(begin/end), step. There are different types of actors which collect
different types of information, however some commands and behavior are common to all actors. To use selection criteria, it is
possible to add filters.

General Purpose

Add an actor

To add an actor, the command is :

/gate/actor/addActor [Actor Type] [Actor Name]

Attach to a volume

Tells that the actor is attached to the volume [Volume Name]. For track and step levels, the actor is activated for step inside the

volume and for tracks created in the volume. If no attach command is provided then the actor is activated in any volume. The
children of the volume inherit the actor.

/gate/actor/[Actor Name]/attachTo [Volume Name]

Save output

This command allow to save the data of the actor to the file [File Name]. The particular behaviour (format, etc.) depends on the
type of the actor.

/gate/actor/[Actor Name]/save [File Name]

It is possible to save the output every N events with the command:

/gate/actor/[Actor Name]/saveEveryNEvents [N]

It is possible to save the output every N seconds with the command:

 /gate/actor/[Actor Name]/saveEveryNSeconds [N]

3D matrix actor (Image actor)

Some actors, such as the dose actor, can store some information into a 3D rectangular image (or matrix) according to the spatial
position of the hit. User can specify the resolution of the 3D matrix (in this case, the size is equal to the size of the bounding box of
the attached volume). Alternatively, user can specify the size to allow larger of smaller matrices.

"attachTo". the main principle is that scoring value is stored in the 3D matrix only when a hit occur in the attached volume. If
the size of the volume is greater than the 3D matrix, hit occurring out of the matrix are not recorded. Conversely, if the 3D
matrix is larger than the attached volume, part which are outside the volume will never record hit (even if it occurs) because
hit is performed out of the volume.
"type". In Geant4, when a hit occur, energy is deposited along a step line. A step is defined by two positions the PreStep and
the PostStep. The user can choose at which position the actor have to stored the information (edep, dose ...) : it can be at
PreStep (pre), at PostStep (post), at the middle between PreStep and PostStep (middle) or distributed from PreStep to
PostStep (random). According to the matrix size, such line can be located inside a single dosel or cross several dosels.
Preferred type of hit is "random", meaning that a random position is computed along this step line and all the energy is
deposited inside the dosel that contains this point.
the attached volume can be a voxelized image the scoring matrix volume (dosels) are thus different from the geometric
voxels describing the image.

/gate/actor/[Actor Name]/attachTo waterbox
/gate/actor/[Actor Name]/setSize 5 5 5 cm
/gate/actor/[Actor Name]/voxelsize 10 20 5 mm
/gate/actor/[Actor Name]/setPosition 1 0 0 mm
/gate/actor/[Actor Name]/stepHitType random

If you would like the the dose actor to use exactly the same voxels as the input image, then the safest way to configure this is
with setResolution. Otherwise, when setting voxelsize, rounding errors may cause the dosels to be slightly different, in
particular in cases where the voxel size is not a nice round number (e.g. 1.03516 mm on a dimension with 512 voxels). Such
undesired rounding effects have been observed Gate release 7.2 and may be fixed in a later release.

Actor list

Simulation statistic

This actor counts the number of steps, tracks, events, runs in the simulation. If the actor is attached to a volume, the actor counts
the number of steps and tracks in the volume. The output is an ASCII file.

/gate/actor/addActor SimulationStatisticActor MyActor
/gate/actor/MyActor/save MyOutput.txt

Electromagnetic (EM) properties

This actor allows extracting EM properties for all materials defined in a simulation, as listed below:

Density (mass density in g/cm³)
e-density (electronic density in e-/mm³)
RadLength (radiation length in mm)
I (ionization potential in eV)
EM-DEDX (EM mass stopping power in MeV.cm²/g)
Nucl-DEDX (nuclear mass stopping power in MeV.cm²/g)
Tot-DEDX (total mass stopping power in MeV.cm²/g)

EM properties are calculated relative to a specific particle type and energy, as defined by the user. For instance, EM properties
corresponding to a 30 MeV neutron can be calculated using the following command lines:

/gate/actor/addActor EmCalculatorActor MyActor
/gate/actor/MyActor/setParticleName proton
/gate/actor/MyActor/setEnergy 150 MeV
/gate/actor/MyActor/save output/MyOutput.txt

Dose measurement

The DoseActor builds 3D images of the energy deposited (edep), dose deposited and the number of hits in a given volume. It takes
into account the weight of particles. It can store multiple information into a 3D grid, each information can be enabled by using:

/gate/actor/[Actor Name]/enableEdep true
/gate/actor/[Actor Name]/enableUncertaintyEdep true
/gate/actor/[Actor Name]/enableSquaredEdep true
/gate/actor/[Actor Name]/enableDose true
/gate/actor/[Actor Name]/enableUncertaintyDose true
/gate/actor/[Actor Name]/enableDose true
/gate/actor/[Actor Name]/enableUncertaintyDose true
/gate/actor/[Actor Name]/enableSquaredDose true
/gate/actor/[Actor Name]/enableNumberOfHits true

Informations can be disable by using "false" instead of "true" (by default all states are false):

/gate/actor/[Actor Name]/enableEdep false

The unit of edep is MeV and the unit of dose is Gy. The dose/edep squared is used to calculate the uncertainty when the output
from several files are added. The uncertainty is the relative statistical uncertainty. "SquaredDose" flag allows to store the sum of
squared dose (or energy). It is very useful when using GATE on several workstations with numerous jobs. To compute the final
uncertainty, you only have to sum the dose map and the squared dose map to estimate the final uncertainty according to the
uncertainty equations.

It is possible to normalize the maximum dose value to 1:

/gate/actor/[Actor Name]/normaliseDose true

For the output, the suffixes Edep, Dose, NbOfHits, Edep-Uncertainty, Dose-Uncertainty, Edep-Squared or Dose-Squared are added
to the output file name given by the user. You can use several files types: ASCII file (.txt), root file (.root), Analyze (.hdr/.img) and
MetaImage (.mhd/.raw) (mhd is recommended !). The root file works only for 1D and 2D distributions.

/gate/actor/addActor DoseActor MyActor
/gate/actor/MyActor/save MyOutputFile.mhd
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/stepHitType random
/gate/actor/MyActor/setSize 5 5 5 m
/gate/actor/MyActor/setResolution 1 1 3000
/gate/actor/MyActor/enableEdep true
/gate/actor/MyActor/enableUncertaintyEdep true
/gate/actor/MyActor/enableSquaredEdep false
/gate/actor/MyActor/enableDose false
/gate/actor/MyActor/normaliseDose false

Water equivalent doses (or dose to water) can be also calculated, in order to estimate doses calculated using water equivalent path
length approximations, such as in Treatment Planning Systems (TPS). Command previously presented for the "dose" also work for
the "dose to water" as shown below:

/gate/actor/[Actor Name]/enableDoseToWater true
/gate/actor/[Actor Name]/enableUncertaintyDoseToWater true
/gate/actor/[Actor Name]/normaliseDoseToWater true

New image format : MHD

Gate now can read and write mhd/raw image file format. This format is similar to the previous hdr/img one but should solve a
number of issues. To use it, just specify .mhd as extension instead of .hdr. The principal difference is that mhd store the 'origin' of
the image, which is the coordinate of the 0,0,0 pixel expressed in the physical world coordinate system (in general in millimetres).
Typically, if you get a dicom image and convert it into mhd (vv (http://vv.creatis.insa-lyon.fr) can conveniently do this), the mhd
will keep the same pixels coordinate system than the dicom.

In Gate, if you specify the macro "TranslateTheImageAtThisIsoCenter" with the coordinate of the isocenter that is, for example
read, in a dicom-rt-plan file, the image will placed such that this isocenter is at position 0,0,0 of the mother volume (often the
world). This is very useful to precisely position the image as indicated in a RT plan. Also, when using a DoseActor attached to a
mhd file, the output dose distribution can be stored also in mhd format. In this case, the origin of the dose distribution will be set
such that it corresponds the the attached image, thus make it possible easy superimposition display in vv.

Note however, that the mhd module is still experimental and not complete. It is thus possible that some mhd images cannot be read.
Use and enjoy at your own risk, please contact us if you find bugs and be warmly acknowledged if you correct bugs.

Dose calculation algorithms

When storing a dose (D=edep/mass) with the DoseActor, mass is computed by using the material density at the step location and
using the volume the dosel. If the size of the image voxel is smaller than the size of the dosel of the DoseActor it can lead to
undesired results.

We proposed a new dose calculation algorithm, called 'Mass weighting'.

Algorithms available in the DoseActor:

Volume weighting (used by default)
Mass weighting (new one)

Volume weighting algorithm

This algorithm is used by default by the DoseActor. The absorbed dose of each material of the dosel is ponderated by the fraction
of materials volume.

The algorithm can be defined with the command :

/gate/actor/[Actor Name]/setDoseAlgorithm VolumeWeighting

Mass weighting algorithm

This algorithm calculate the dose of each dosels by taking deposited energy and divide it by its mass.

This algorithm can be chosen with the command :

/gate/actor/[Actor Name]/setDoseAlgorithm MassWeighting

Mass image :

Mass images (.txt, .root, .mhd) can be imported and exported to be used by the mass weighting algorithm.

Exportation :

/gate/actor/[Actor Name]/exportMassImage path/to/MassImage

Importation :

/gate/actor/[Actor Name]/importMassImage path/to/MassImage

The unit of mass images is kg.

When the mass weighting algorithm is used on a unvoxelized volume, depending on the dosel's resolution of the DoseActor
the computation can take a very long time.

Important note : If no mass image is imported when using the mass weighting algorithm Gate will calculate the mass
during the simulation (this can take a lot of time).

The command exportMassImage can be used to generate the mass image of the DoseActor attached volume one time for all and
import it with the importMassFile command.

Limitations :

With voxelized phantom :
MassWeighting algorithm work with phantoms imported with ImageRegularParametrisedVolume and
ImageNestedParametrisedVolume.
For now it's not possible to choose an actor resolution smaller than the phantom's resolution.
It is mandatory to attach directly the phantom to the actor.

With unvoxelized geometry : The dosels resolution must be reasonably low otherwise the time of calculation can be
excessively long ! (and can need a lot of memory !)

Kill track

This actor kills tracks entering the volume. The output is the number of tracks killed. It is stored an ASCII file.

/gate/actor/addActor KillActor MyActor
/gate/actor/MyActor/save MyOutputFile.txt
/gate/actor/MyActor/attachTo MyVolume

Stop on script

This actor gets the output of a script and stop the simulation if this output is true. The script is called with the command:

/gate/actor/[Actor Name]/save MyScript

It is possible to save all the others actor before stopping the simulation with the command:

/gate/actor/[Actor Name]/saveAllActors true

Example:

/gate/actor/addActor StopOnScriptActor MyActor
/gate/actor/MyActor/save MyScript
/gate/actor/MyActor/saveAllActors true

Track length

This actor stores the length of each tracks in a root file. It takes into account the weight of particles. They are three commands to
define the boundaries and the binning of the histogram.

/gate/actor/addActor TrackLengthActor MyActor

/gate/actor/MyActor/save MyOutputFile.root
/gate/actor/MyActor/setLmin 0 mm
/gate/actor/MyActor/setLmax 1 cm
/gate/actor/MyActor/setNumberOfBins 200

Energy spectrum

This actor builds four histograms: the initial kinetic energy of each track (energySpectrum), the energy deposition per event
(edepHisto), the energy deposition per track (edepTrackHisto), the energy loss per track (eLossHisto). These histograms are stored
in a root file. They takes into account the weight of particles. They are three commands to define the boundaries and the binning of
the energy spectrum and three commands to define the boundaries and the binning of the energy loss histograms (edepHisto,
edepTrackHisto, eLossHisto).

/gate/actor/addActor EnergySpectrumActor MyActor
/gate/actor/MyActor/save MyOutputFile.root
/gate/actor/MyActor/energySpectrum/setEmin 0 eV
/gate/actor/MyActor/energySpectrum/setEmax 10 GeV
/gate/actor/MyActor/energySpectrum/setNumberOfBins 200
/gate/actor/MyActor/energyLossHisto/setEmin 0 eV
/gate/actor/MyActor/energyLossHisto/setEmax 15 MeV
/gate/actor/MyActor/energyLossHisto/setNumberOfBins 120

Production and stopping particle position

This actor stores in a 3D image the position where particles are produced and where particles are stopped. For the output, the
suffixes Prod and Stop are added to the output file name given by the user. You can use several files types: ASCII file (.txt), root file
(.root), (.hdr/.img). The root file works only for 1D and 2D distribution.

/gate/actor/addActor ProductionAndStoppingActor MyActor
/gate/actor/MyActor/save MyOutputFile.hdr
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/setResolution 10 10 100
/gate/actor/MyActor/stepHitType post

< ! > In Geant4, secondary production occurs at the end of the step, the recommended state for 'stepHitType' is 'post'

Secondary production

This actor creates a root file and stores the number of secondaries in function of the particle type. Ionisation electrons are
dissociated from electrons produced by other processes. Decay positrons are dissociated from positrons produced by other
processes. Gammas are classified in four categories: gammas produced by EM processes, gammas produced by hadronic processes,
gammas produced by decay processes and other gammas.

/gate/actor/addActor SecondaryProductionActor MyActor
/gate/actor/MyActor/save MyOutputFile.root
/gate/actor/MyActor/attachTo MyVolume

Delta kinetic energy

This actor sums the relative and absolute Δ(kinetic energy) and stores the results in two files (with suffixes "-RelStopPower" and "-
StopPower"). It also stores the map of the hits to allow users to calculate the mean values.

/gate/actor/addActor StoppingPowerActor MyActor
/gate/actor/MyActor/save MyOutputFile.hdr
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/setResolution 10 10 100
/gate/actor/MyActor/stepHitType random

Number of particles entering volume

This actor builds a map of the number of particules produced outside of the actor volume and interacting in the volume. The
particle is recorded once in each voxel where it interacting.

/gate/actor/addActor ParticleInVolumeActorMyActor

/gate/actor/MyActor/save MyOutputFile.hdr
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/setResolution 10 10 100
/gate/actor/MyActor/stepHitType post

Q-value

This actor calculate the Q-values of interactions.

/gate/actor/addActor QvalueActorMyActor
/gate/actor/MyActor/save MyOutputFile.hdr
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/setResolution 10 10 100
/gate/actor/MyActor/stepHitType random

CrossSectionProductionActor

The CrossSectionProductionActor derives the production of C-11, or O-15 from the equation proposed by (Parodi et al, 2007). The
cross section data are provided by directly in the class code. By default, only the production of the C-11 is activated.

WARNING: The size of the image has to be given in mm

The current limit in cross section data is 199 MeV, other data can be added in the class.

/gate/actor/addActor CrossSectionProductionActor beta
/gate/actor/beta/attachTo volume
/gate/actor/beta/save output_dump/test_small.hdr
/gate/actor/beta/addO15 true
/gate/actor/beta/addC11 true
/gate/actor/beta/setVoxelSize 1 1 1 mm
/gate/actor/beta/saveEveryNEvents 100000

Biological Washout: WashOutActor

The biological washout processes were incorporated into the GATE code. The Mizuno model (H. Mizuno et al. Phys. Med. Biol.
48, 2003). is implemented. For this purpose, a new actor, which allows the management of particles during the tracking, was
developed. This actor is named WashoutActor and it is attached to a certain volume, in which the washout processes are applied. In
particular, the activity distributions of the associated volume are continuously modified as a function of the acquisition time in
terms of the following equation:

Cwashout(t) = Mf.exp(− t / Tf.ln2) + Mm.exp(− t / Tm.ln2) + Ms.exp(− t / Ts.ln2)

Where 3 components are defined (fast, medium and slow) with two parameters for each: the half life T and the fraction M (Mf +
Mm + Ms = 1).

Users should provide a table as an ASCII file with the washout parameters values for any radioactive source in the associated
volume. In order to take into account the physiological properties of each tissue, it is important to highlight that one independent
radioactive source should be defined per each material involved in the simulation.

Example: How to define a washout actor module

/gate/actor/addActor WashOutActor [ACTOR NAME]
/gate/actor/[ACTOR NAME]/attachTo [VOLUME NAME]
/gate/actor/[ACTOR NAME]/readTable [TABLE FILE NAME]

Example of [TABLE FILE NAME]: How to specify different parameters which are associated to the washout model - This ASCII
file will be used by the washout Actor.

2
[SOURCE 1 NAME] [MATERIAL 1 NAME] [Mf VALUE] [Tf VALUE IN SEC] [Mm VALUE] [Tm VALUE IN SEC] [Ms VALUE] [Ts VALUE IN SEC]
[SOURCE 2 NAME] [MATERIAL 2 NAME] [Mf VALUE] [Tf VALUE IN SEC] [Mm VALUE] [Tm VALUE IN SEC] [Ms VALUE] [Ts VALUE IN SEC]
...
...

Fluence Actor (particle counting)

This actor counts the number of time a (new) particle is passing through a volume ; output as an image.

/gate/actor/addActor FluenceActor Detector
/gate/actor/Detector/save output/detector.mhd
/gate/actor/Detector/attachTo DetectorPlane
/gate/actor/Detector/stepHitType pre
/gate/actor/Detector/setSize 10 410 410 mm
/gate/actor/Detector/setResolution 1 256 256
/gate/actor/Detector/enableScatter true

TLE and seTLE (Track Length Estimator)

TLE is the Track Length Estimator method initially proposed by [Williamson1997] allowing very fast dose computation for low
energy photon beam (about below 1 MeV). About 1000x faster than analog Monte-Carlo. The second method, seTLE for split-
exponential TLE, was proposed in [Smekens2014] and is about 15x faster than TLE.

Williamson J F 1987 Monte Carlo evaluation of kerma at a point for photon transport problems Med. Phys. 14 567–76
F. Smekens, J. M. Létang, C. Noblet, S. Chiavassa, G. Delpon, N. Freud, S. Rit, and D. Sarrut, "Split exponential track length
estimator for Monte-Carlo simulations of small-animal radiation therapy", Physics in medicine and biology, vol. 59, issue 24,
pp. 7703-7715, 2014 [[1] (http://iopscience.iop.org/0031-9155/59/24/7703/pdf/0031-9155_59_24_7703.pdf|pdf)]
F. Baldacci, A. Mittone, A. Bravin, P. Coan, F. Delaire, C. Ferrero, S. Gasilov, J. M. Létang, D. Sarrut, F. Smekens, et al., "A
track length estimator method for dose calculations in low-energy x-ray irradiations: implementation, properties and
performance", Zeitschrift Fur Medizinische Physik, 2014.
A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Létang, D. Sarrut, et al., "An
efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy.",
Journal of synchrotron radiation, vol. 20, issue Pt 5, pp. 785-92, 2013

Usage is very simple just replace the DoseActor by TLEDoseActor. See examples/example_Radiotherapy/example10 in the Gate
source code :

/gate/actor/addActor TLEDoseActor tle
/gate/actor/tle/attachTo phantom
/gate/actor/tle/stepHitType random
/gate/actor/tle/setVoxelSize 2 2 2 mm
/gate/actor/tle/enableDose true
/gate/actor/tle/save output/dose-tle.mhd

or

/gate/actor/addActor SETLEDoseActor setle
/gate/actor/setle/attachTo phantom
/gate/actor/setle/setVoxelSize 2 2 2 mm
/gate/actor/setle/enableHybridino true
/gate/actor/setle/setPrimaryMultiplicity 200
/gate/actor/setle/setSecondaryMultiplicity 400
/gate/actor/setle/enableDose true
/gate/actor/setle/save output/dose-setle.mhd

A detailed documentation is available here : http://midas3.kitware.com/midas/download/item/316877/seTLE.pdf

Fixed Forced Detection CT

This actor is a variance reduction technique for the simulation of CT.

The fixed forced detection technique (Colijn & Beekman 2004, Freud et al. 2005, Poludniowski et al. 2009) relies on the
deterministic computation of the probability of the scattered photons to be aimed at each pixel of the detector. The image of
scattered photons is obtained from the sum of these probabilities.

The probability of each scattering point to contribute to the center of the j−th pixel is the product of two terms:

The first term is the probability of the photon to be scattered in the direction of the pixel.

The second term is the probability of the scattered photon to reach the detector and to be detected.

Fixed Forced Detection summary:

1) Deterministic simulation of the primary (DRR)

2) Low statistics Monte Carlo simulation ⇒ Compute scattering points

3) Fixed forced detection (deterministic)

Inputs:

/gate/actor/addActor FixedForcedDetectionActor MyActor
/gate/actor/MyActor/attachTo world
/gate/actor/MyActor/setDetector DetectorPlane
/gate/actor/MyActor/setDetectorResolution 128 128
/gate/actor/MyActor/responseDetectorFilename data/responseDetector.txt

The detector response δ(E) is modeled with a continuous energy-function that describes the average measured energy for a given
incident energy E.

Commands:

attachTo ⇒ Attaches the sensor to the given volume
saveEveryNEvents ⇒ Save sensor every n Events.
saveEveryNSeconds ⇒ Save sensor every n seconds.
addFilter ⇒ Add a new filter
setDetector ⇒ Set the name of the volume used for detector (must be a Box).
setDetectorResolution ⇒ Set the resolution of the detector (2D).
geometryFilename ⇒ Set the file name for the output RTK geometry filename corresponding to primary projections.
primaryFilename ⇒ Set the file name for the primary x-rays (printf format with runId as a single parameter).
materialMuFilename ⇒ Set the file name for the attenuation lookup table. Two paramaters: material index and energy.
attenuationFilename ⇒ Set the file name for the attenuation image (printf format with runId as a single parameter).
responseDetectorFilename ⇒ Input response detector curve.
flatFieldFilename ⇒ Set the file name for the flat field image (printf format with runId as a single parameter).
comptonFilename ⇒ Set the file name for the Compton image (printf format with runId as a single parameter).
rayleighFilename ⇒ Set the file name for the Rayleigh image (printf format with runId as a single parameter).
fluorescenceFilename ⇒ Set the file name for the fluorescence image (printf format with runId as a single parameter).
secondaryFilename ⇒ Set the file name for the scatter image (printf format with runId as a single parameter).
enableSquaredSecondary ⇒ Enable squared secondary computation
enableUncertaintySecondary ⇒ Enable uncertainty secondary computation
totalFilename ⇒ Set the file name for the total (primary + scatter) image (printf format with runId as a single parameter).
phaseSpaceFilename ⇒ Set the file name for storing all interactions in a phase space file in root format.
setInputRTKGeometryFilename ⇒ Set filename for using an RTK geometry file as input geometry.
noisePrimaryNumber ⇒ Set a number of primary for noise estimate in a phase space file in root format.

An example is available at example_CT/fixedForcedDetectionCT

The GateHybridForcedDetectionActor works for:

One voxelized (CT) volume, the rest must be of the same material as the world → No volume between voxelized volume and
detector.

Point sources (plane distribution focused).

A given detector description.

With some additional geometric limitations.

PromptGammaTLEActor

This actor is used to investigate prompt gamma production in proton therapy simulations. It provides a speedup factor of around
1000 compared to analog MC.

vpgTLE is broken up into three parts. Stage 0 is required to be run once, and each vpgTLE simulation is then broken up into Stage
1 and Stage 2. For each stage, you can find and example in the examples/vpgTLE directory.

To understand the background, physics and mathematics of this example, refer to Accelerated Prompt Gamma estimation for
clinical Proton Therapy simulations by B.F.B. Huisman.

LET Actor

This actor calculates the dose or track averaged linear energy transfer.

/gate/actor/addActor LETActor MyActor
/gate/actor/MyActor/save output/myLETactor.mhd
/gate/actor/MyActor/attachTo phantom
/gate/actor/MyActor/setResolution 1 1 100
/gate/actor/MyActor/setType DoseAveraged

Options: DoseAveraged (default) or TrackAveraged. Both calculation methods use the Geant4 EMCalculator method
"GetElectronicStoppingPowerDEDX".

For splitting the simulation into sevaral sub-simulations (e.g. parallel computation) enable:

/gate/actor/MyActor/doParallelCalculation true

The default value is false. Enabling this option will produce 2 output images for each LET actor and run, a file labeled as '-
numerator' and one labeled as '-denominator'. Building the quotient of these two images results in the averaged LET image. Note
that the numerator and denominator images have to be summed up before the division.

By default the unrestricted LET is calculated.

/gate/actor/MyActor/setRestricted false

If the restricted flag is set to true, the restricted LET is calculated, but also the calculation method changes. Instead of using
tabulated stopping powers for the mean kinetic energy of the particle, the stopping power is calculated as the quotient of the
deposited energy and the step length (ICRU 85). Be aware of potential artifacts (voxel size, step limiter, e- production cuts etc.)
reported in literature for this calculation method. The production cut for electrons defines the energy carried away.

By default, the stopping power of the material at the PreStepPoint is used. If the averaged LET to water regardless of the material is
of interest, set following line to true:

/gate/actor/MyActor/setDoseToWater false

ID and particle filters can be used:

/gate/actor/MyActor/addFilter particleFilter
/gate/actor/MyActor/particleFilter/addParticle proton

See: Cortes-Giraldo and Carabe, 2014, A critical study on different Monte Carlo scoring method of dose-average-linear energy

transfer maps

Filters
Filters are used to add selectrion criteria on actors. They are also used with reduction variance techniques. They are filters on
particle type, particle ID, energy, direction....

Filter on particle type

With this filter it is possible to select particle with the name [Particle Name]:

/gate/actor/[Actor Name]/addFilter particleFilter
/gate/actor/[Actor Name]/particleFilter/addParticle [Particle Name]

User can select various particles. It is also possible to select particles which has a parent with the name [Particle Name]:

/gate/actor/[Actor Name]/addFilter particleFilter
/gate/actor/[Actor Name]/particleFilter/addParentParticle [Particle Name]

For ions, user should use the Geant4 nomenclature (C12[0.0], c11[0.0]...). These names are different from those used for physics.
To select all ions exept alpha, deuton and triton, there is the key word 'GenericIon'.

Example: To kill electrons and positrons in the volume MyVolume:

/gate/actor/addActor KillActor MyActor
/gate/actor/MyActor/save MyOutputFile.txt
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/addFilter particleFilter
/gate/actor/MyActor/particleFilter/addParticle e-
/gate/actor/MyActor/particleFilter/addParticle e+

Filter on particle ID

In an event, each track has an unique ID. IDs are reset at each event. The incident particle has an ID equal to 1. This filter select
particles with the ID [Particle ID] or particles which has a parent with the ID [Particle ID]. As for particle filter, user can select
many IDs.

/gate/actor/[Actor Name]/addFilter IDFilter
/gate/actor/[Actor Name]/IDFilter/selectID [Particle ID]

/gate/actor/[Actor Name]/addFilter IDFilter
/gate/actor/[Actor Name]/IDFilter/selectParentID [Particle ID]

Example: To kill all particle exept the incident particle in the volume MyVolume (all particles are the children of the incident
particle exept the incident particle itself):

/gate/actor/addActor KillActor MyActor
/gate/actor/MyActor/save MyOutputFile.txt
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/addFilter IDFilter
/gate/actor/MyActor/IDFilter/selectParentID 1

Filter on volume

This actor is especially useful for reduction variance techniques or for selections on daughter volumes.

Example: To kill particles in volume A and B, children of the volume MyVolume:

/gate/actor/addActor KillActor MyActor
/gate/actor/MyActor/save MyOutputFile.txt

/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/addFilter volumeFilter
/gate/actor/MyActor/volumeFilter/addVolume A
/gate/actor/MyActor/volumeFilter/addVolume B

Filter on energy

This filter allows to select particles with a kinetic energy above a threshold Emin and/or below a threshold Emax.

/gate/actor/[Actor Name]/addFilter energyFilter
/gate/actor/[Actor Name]/energyFilter/setEmin [Value] [Unit]
/gate/actor/[Actor Name]/energyFilter/setEmax [Value] [Unit]

Example: To kill particles with an energy above 5 MeV :

/gate/actor/addActor KillActor MyActor
/gate/actor/MyActor/save MyOutputFile.txt
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/addFilter energyFilter
/gate/actor/MyActor/energyFilter/setEmin 5 MeV

Filter on direction

This filter is used to select particle with direction inside a cone centered on the reference axis. The angle between the axis and the
edge of the cone is in degree. The axis is defined with the (x,y,z) directions.

/gate/actor/[Actor Name]/addFilter angleFilter
/gate/actor/[Actor Name]/angleFilter/setAngle [Value]
/gate/actor/[Actor Name]/angleFilter/setDirection [x] [y] [z]

Example: To kill particles in a cone of 20 degrees around x axis:

/gate/actor/addActor KillActor MyActor
/gate/actor/MyActor/save MyOutputFile.txt
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/addFilter angleFilter
/gate/actor/MyActor/angleFilter/setAngle 20
/gate/actor/MyActor/angleFilter/setDirection 1 0 0

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Readout_parameters_for_Radiotherapy_applications:_Actors"

This page was last modified on 9 June 2016, at 08:28.
[3 watching users]

Users Guide V7.2:Phase space concept
From GATE collaborative documentation wiki

Table of Contents
How to create a phase space ?
How to use a phase space ?

How to create a phase space ?
This actor records information about particles entering the volume which the actor is attached to. They are
two file types for the output: root file (.root) and IAEA file (.IAEAphsp and .IAEAheader). The name of the
particle, the kinetic energy, the position along the three axes, the direction along the three axes, the weight
are recorded. In a IAEA file, each particle is designated by an integer while the full name of the particle is
recorded in the root file. Particles in IAEA files are limited to photons, electrons, positrons, neutrons and
protons. The root file has two additional pieces of information: the name of the volume where the particle
was produced and the name of the process which produced the particle. It is posssible to disable some
information in the phase space file:

/gate/actor/source/enableEkine false
/gate/actor/source/enableXPosition false
/gate/actor/source/enableYPosition false
/gate/actor/source/enableZPosition false
/gate/actor/source/enableXDirection false
/gate/actor/source/enableYDirection false
/gate/actor/source/enableZDirection false
/gate/actor/source/enableProductionVolume false
/gate/actor/source/enableProductionProcess false
/gate/actor/source/enableParticleName false
/gate/actor/source/enableWeight false

By default the frame used for the position and the direction of the particle is the frame of the world. To use
the frame of the volume which the actor is attached to, the following command should be used:

/gate/actor/source/useVolumeFrame

/gate/actor/addActor PhaseSpaceActor MyActor
/gate/actor/MyActor/save MyOutputFile.IAEAphsp
/gate/actor/MyActor/attachTo MyVolume
/gate/actor/MyActor/enableProductionProcess false
/gate/actor/MyActor/enableDirection false
/gate/actor/MyActor/useVolumeFrame

By default, the phase space stores particles entering the volume. To store particles exiting the volume, the
following command should be used:

/gate/actor/MyActor/storeOutgoingParticles true

To store all secondary particles created in the volume, use the command:

/gate/actor/MyActor/storeSecondaries true

Phase spaces built with all secondaries should not be used as source because some particles could be
generated several times.

With ROOT files, to avoid very big files, it is possible to restrict the maximum size of the phase space. If a
phase space reachs the maximum size, the files is closed and a new file is created. The new file has the same
name and a suffix is added. The suffix is the number of the file. For instance, instead of one file of 10 GB,
user may prefer 10 files of 1 GB. The value of the maximum size is not exactly the size of the file (value is
the size of the TTree).

/gate/actor/MyActor/setMaxFileSize [Value] [Unit (B, kB, MB, GB)]

How to use a phase space ?
The source of the simulation could be a phase space. Gate read two types of phase space: root files and
IAEA phase spaces. Both can be created with Gate. However, Gate could read IAEA phase spaces created
with others simulations.

/gate/source/addSource [Source name] phaseSpace

User can add several phase space files. All files should have the same informations about particles. The files
are chained:

/gate/source/[Source name]/addPhaseSpaceFile [File name 1]
/gate/source/[Source name]/addPhaseSpaceFile [File name 2]

If particles in the phase space are defined in the world frame, user has to used the command:

/gate/source/[Source name]/setPhaseSpaceInWorldFrame

If the particle type is not defined in the phase space file, user have to give the particle name. It is supposed
that all particles have the same name:

/gate/source/[Source name]/setParticleType [Particle name]

If user have several phase space sources, each source have the same intensity. User can also choose to give
at each source an intensity proportionnal to the number of particles in the files attach to the source:

/gate/source/[Source name]/useNbOfParticleAsIntensity true

For each run, if the number of events is higher than the number of particles in file, each particle is used
several times with the same initial conditions. However, it is possible to rotate the particle position and
direction around the z axis of the volume (make sure your phase space files have a rotational symmetry). The
regular rotation is a rotation with a fixed angle:

where Nused is the number of time the particle is used.

/gate/source/[Source name]/useRegularSymmetry

The random rotation is a rotation with a random angle.

/gate/source/[Source name]/useRandomSymmetry

By default, all particles in a phase space are used. The particles in the the phase space can be preselected in
function of their position in the (x,y) plan. For instance, a particle with a origin far from the collimator
aperture is not useful and should be ignored. Particles in a r cm-radius circle are selected. The particles
outside the circle are ignored.

/gate/source/[Source name]/setRmax [r] [unit]

Examples are available here (http://wiki.opengatecollaboration.org/index.php/GateRT)

Retrieved from "http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Phase_space_concept"

This page was last modified on 8 February 2016, at 12:17.

GateRT
From GATE collaborative documentation wiki

GATE for Radiation Therapy applications

GATE was initially developed for PET and SPECT applications. From version 6.0, some specific tools has
been added for radiation therapy (RT) applications. A set of examples illustrates the use of Gate for various
photon, proton and carbon ion applications.

Some examples could be found here : https://dsarrut.gitbooks.io/gate-exercises/content/

Disclaimer: the tools dedicated to radiation therapy simulations provided in this GATE release are provided
"as is" and on an "as available" basis without any representation or endorsement made and without
warranty of any kind. We will be happy if you can report bugs and hence improve this collaborative
software.

Location: The examples are located in the source code into to the folder :
Gate/examples/example_Radiotherapy/.

Proton therapy examples:

Example 4 : Beam optics simulation in vacuum for a pencil beam + depth-dose profile in water. A root
macro is provided to analysis the produced phase space files (PhS-Analysis.C).
Example 5 : Treatment plan simulation of proton active scanning beam delivery (TPSPencilBeam
source). A root macro is provided to analysis the produced phase space files (PhS-Analysis.C).
Example 6 : Example of proton pencil beam in heterogeneous phantom (water, bones, Lung) with
Pencil Beam Scanning source: comparison between dose to water and dose to dose to medium.

Carbon ion therapy examples:

Example 1 : Example of Carbon beam in water tank or in patient CT image. Output is a 3D dose
distribution map (with associated statistical uncertainty) and map of produced C11.

Photon/electron therapy examples:

Example 2 : Example of photon beam in patient CT image. Output is a 3D dose distribution map (with
associated uncertainty). Two different navigators are tested NestedParameterized and Regionalized,
with two

number of materials). (This example is similar to the example1 presented on the wiki web site of Gate V6.1)

Example 3 : Example of photon beam in patient CT image with IMRT irradiation. 100 slices with
different MLC positions. (This example is similar to the example2 presented on the wiki web site of
Gate V6.1)
Example 7 : Example to use repeater/mover and both at the same time. (This example is similar to the
example5 presented on the wiki web site of Gate V6.1)
Example 8 : Photon beam from a Linac into a box with water/alu/lung. See Figure4 from [Jan et al
PMB 2011].

Example 9 : Electron beam from a Linac into a box with water/alu/lung. See Figure5 from [Jan et al
PMB 2011].

Radiography examples:

Example 10 : Radiography of a thorax phantom. Outputs are 3D dose distribution maps computed
with the classical method and the accelerated (TLE) method.

Older examples: are still available here : [1] (http://www.creatis.insa-lyon.fr/gate) but are no more
maintained.

Retrieved from "http://wiki.opengatecollaboration.org/index.php/GateRT"

This page was last modified on 7 June 2016, at 04:33.
[3 watching users]

Users Guide V7.2:How to use Gate on a Cluster
From GATE collaborative documentation wiki

Table of Contents
Installation of the job splitter (gjs)
Installation of the file merger (gjm)
Preparing your macro
Using the job splitter
Using the file merger
Alternative to the file merger
What about errors ?

To reduce the overall computing time of GATE experiments, a parallel computing platform for running
simulations in a cluster of computers was developed which significantly shortens the setup time and
provides fast data output handling. To use Gate in cluster mode you need 3 components:

The job splitter (gjs)
The file merger (gjm)
A cluster aware version of Gate

Installation of the job splitter (gjs)
The job splitter can be installed in the same directory as Gate. Two environment variables are already added
to the environment file used to compile Gate (but you can customize them):

 export GC_DOT_GATE_DIR=/somedir/
 export GC_GATE_EXE_DIR=/somedir/bin/Linux-g++/

The first variable indicates the location of a hidden directory called .Gate. The directory will contain the split
macros for each part of the simulation. Even when splitting the same macro several times, a new directory
will be created for each instance (with an incremental number). In normal circumstances, one does not need
to look into it. In case of an error, it can be used to run only a specific part of a simulation again (See #What
about errors?). The second environment variable indicates the location of the job splitter executable. As the
Gate environment file will be used to compile the job splitter source code, the executable will likely be
located in the same directory as the Gate executable.

To install, load the Gate/Geant4 environment variables, go to the job splitter directory (bash example):

source env_gate.sh
cd jobsplitter
make

By default, the executable will be created in the jobsplitter directory. If the GATEHOME variable is
correctly defined, the executable will also be copied in the same directory as the Gate executable (same for
the dynamic library).

Installation of the file merger (gjm)
To install, it is the same way, go to the file merger directory and compile (bash example):

cd filemerger
make

The file merger executable is located in the current directory (and will also be copied in the Gate bin
directory as for the gjs program).

Preparing your macro
The cluster software should be able to handle all GATE macros. However, only ROOT is currently
supported as an output format for the gjm program. So be aware that other output formats cannot yet be
merged with the gjm program and you will have to do this on your own (but it is usually quite simple ~
addition or mean most of the time).

If an isotope with a shorter half life than the acquisition time is simulated, then it may be useful to specify
the half life in your macro as follows:

 /gate/cluster/setTimeSplitHalflife 6600. s

This way, the CPU time will be approximately equal for each job.

In planning simulation time, it is important to be aware that Gate simulations currently seem to benefit only
from the addition of physical CPUs. A computer with 8 hyper-threaded physical CPU cores (16 logical
CPUs) will have the same computational efficiency if 8 processes are run simultaneously as it would with 16
simultaneous processes.

Using the job splitter
To view information regarding general usage, you can run the job splitter executable without any options:

 +---+
 | gjs -- The GATE cluster job macro spliter |
 +---+

 Usage: gjs [-options] your_file.mac

 Options (in any order):
 -a value alias : use any alias
 -numberofsplits, -n n : the number of job splits; default=1
 -clusterplatform, -c name : the cluster platform, name is one of the following:
 openmosix - condor - openPBS - xgrid
 This executable is compiled with condor as default

 -openPBSscript, os : template for an openPBS script
 see the example that comes with the source code (script/openPBS.script)
 overrules the environment variable below

 -condorscript, cs : template for a condor submit file
 see the example that comes with the source code (script/condor.script)
 -v : verbosity 0 1 2 3 - 1 default

 Environment variables:

 GC_DOT_GATE_DIR : indicates the .Gate directory for splitted mac files
 GC_GATE_EXE_DIR : indicates the directory with the Gate executable
 GC_PBS_SCRIPT : the openPBS template script (!optionnal variable!)

 Usage (bash):
 export GC_DOT_GATE_DIR=/home/user/gatedir/
 export GC_GATE_EXE_DIR=/home/user/gatedir/bin/Linux-g++/

 Examples:
 gjs -numberofsplits 10 -clusterplatform openmosix macro.mac
 gjs -numberofsplits 10 -clusterplatform openmosix -a /somedir/rootfilename ROOT_FILE macro.mac
 gjs -numberofsplits 10 -clusterplatform openPBS -openPBSscript /somedir/script macro.mac
 gjs -numberofsplits 10 -clusterplatform xgrid macro.mac
 gjs -numberofsplits 10 /somedir/script macro.mac

The supported platforms are currently: openMosix, openPBS, Condor and Xgrid.

Let's take openMosix as an example:

 gjs -numberofsplits 5 -clusterplatform openmosix macro.mac

The job splitter will subdivide the simulation macro into fully resolved, non-parameterized macros. In this
case there are 5 such macros. They are located in the .Gate directory, as specified by the
GC_DOT_GATE_DIR environment variable.

A list of all the data output options is given after successful completion, as well as a list of all activated
actors. The user is asked to clearly enable each needed output module and to give them an output file name.
It is the same for actors. Remember that by default, no output module nor actor is enabled.

If an alias was expected for output files and it was not supplied, then this will be mentioned in the output
options list. A standard name will be supplied automatically, as well as appropriate numbering.

The time of each sub-macro is manage using a virtual timeStart and a virtual timeStop calculated by the gjs
and used by the command /gate/application/startDAQCluster. All defined runs and geometry updates will be
totally respected. The only inconsistency in the use of gjs is when using the projection output: the
virtualStop minus virtualStart time have to be a multiple of timeSlice, otherwise the GateToProjectionSet
output will lead to an error.

The .Gate directory will have a subdirectory called as the macro name, that contains the following files:

macro1.mac
macro2.mac
macro3.mac
macro4.mac
macro5.mac
macro.split

The 5 macros are listed as well as well as the .split file that contains information about the splitted
simulation and that will be used to merge the data after the simulation (using the gjm program). The current
directory, from which the jobsplitter was called, now contains the cluster submit file. In order to run the split
simulation on the cluster, one only needs to execute or call this file with a certain program (depending on the
cluster platform used).

The .Gate directory supports automatic numbering. If the same macro is used repeatedly, then the
subsequent directories will be numbered using an incremental number.

Using the file merger
The file merger have to be run giving the split file as input. To view information on general usage, just run
the file merger executable without any options:

 +---+
 | gjm -- The GATE cluster job output merger |
 +---+

 Usage: gjm [-options] your_file.split

 You may give the name of the split file created by gjs (see inside the .Gate directory).
 !! This merger is only designed to ROOT output. !!

 Options:
 -outDir path : where to save the output files default is PWD
 -v : verbosity 0 1 2 3 - 1 default
 -f : forced output - an existing output file will be overwritten
 -cleanonly : do only a the cleanup step i.e. no merging
 erase work directory in .Gate and the files from the parallel jobs
 -cleanonlyTest : just tells you what will be erased by the -cleanonly
 -clean : merge and then do the cleanup automatically
 -fastMerge : correct the output in each file, to be used with a TChain (only for Root output)

 Environment variable:
 GC_DOT_GATE_DIR : points to the .Gate directory

To merge the output files into a single file, just supply the split file to the file merger. The output file could be
used as a usual single CPU output file.

 gjm macro.split

 Combining: ./rootf1.root ./rootf2.root ./rootf3.root ./rootf4.root ./rootf5.root $->$./rootf.root

In case a single output file is not required, it is possible to use the option fastMerge. This way, the eventIDs
in the ouput files are corrected locally. Figure 13.1 shows the newly created tree in each ROOT file.

Figure 13.1: Example of ROOT file with added cluster eventIDs

A ROOT chain, which is a list of files containing the same tree, is then required to link the output files
together for analysis. A chain for the Singles could be made as follows (in a file called chain.c):

\{
gROOT->Reset();
TChain chain("Singles");
chain.Add("rootf1.root");
chain.Add("rootf2.root");
chain.Add("rootf3.root");
chain.Add("rootf4.root");
chain.Add("rootf5.root");
\}

Once all files are added to the chain, one can use the chain as a regular Ttree, and the normal ROOT prompt
is returned:

 $root chain.c

FreeType Engine v2.1.3 used to render TrueType fonts.
Compiled for linux with thread support.
CINT/ROOT C/C++ Interpreter version 5.15.94, June 30 2003
Type ? for help. Commands must be C++ statements.

Enclose multiple statements between \{ \}.
root [0]
Processing chain.c...
root [1]
root [1] Singles->Draw("energy")

Alternative to the file merger
Root files can also be merged by using the hadd utility on the command line:

hadd result.root file1.root file2.root ... filen.root

What about errors?
If something went wrong during a simulation and a ROOT file is corrupted or incomplete, then this will be
detected by the file merger. There are two options. First, one can restart only the specific part of the
simulation that went wrong. This can be easily done, as the ROOT files are numbered and one can edit the
submit file so it only launches that specific part. Alternatively, one can find the macro file that was used to
start that part of the simulation in the .Gate directory and start the simulation directly with the macro file and
its corresponding seed file. The second option is to edit the split file, located in the .Gate directory. Once the
reference to the corrupted root file is removed from it, it is possible to merge the files again. At this point,
the eventIDs will not be valid anymore.

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:How_to_use_Gate_on_a_Cluster"

This page was last modified on 8 February 2016, at 12:17.

Users Guide V7.2:How to use Gate on a GPU
From GATE collaborative documentation wiki

Table of Contents
Installation of CUDA tools
PET applications
CT applications
Optical applications

Installation of CUDA tools
IMPORTANT NOTE:

!! GPU modules can be used ONLY with NVIDIA hardware and CUDA tools !!

For details, see the link on the wiki installation guide page:
http://wiki.opengatecollaboration.org/index.php/New_Compilation_ProcedureV7.0#GPU_.26_CUDA_tools

PET applications
For PET applications, the GPU manages the particle tracking within the voxelized phantom and this is why
the source type is defined as a [GPUEmisTomo]. Examples are provided within the GATE source package
and users can find a complete example about How To define and run a complete PET simulation set-up by
using a GPU architecture.

IMPORTANT NOTES:

1/ By using the GPU, phantom scatter informations are NOT available in the output files

2/ The sources radiactive decay time is NOT available with the GPU

#==
VOXELIZED SOURCES
#==
/gate/source/addSource srcvoxel GPUEmisTomo
/gate/source/srcvoxel/attachPhantomTo ncat
/gate/source/srcvoxel/setGPUBufferSize 1000000
/gate/source/srcvoxel/setGPUDeviceID 1
Read the phantom as usual
/gate/source/srcvoxel/reader/insert interfile
/gate/source/srcvoxel/interfileReader/translator/insert range
/gate/source/srcvoxel/interfileReader/rangeTranslator/readTable data/activities.dat
/gate/source/srcvoxel/interfileReader/rangeTranslator/describe 1
/gate/source/srcvoxel/interfileReader/verbose 0
/gate/source/srcvoxel/interfileReader/readFile data/thorax_phantom.hdr
/gate/source/srcvoxel/setType backtoback
/gate/source/srcvoxel/gps/particle gamma
/gate/source/srcvoxel/gps/energytype Mono
/gate/source/srcvoxel/gps/monoenergy 0.511 MeV
/gate/source/srcvoxel/setPosition 0 0 0 cm
/gate/source/srcvoxel/gps/confine NULL
/gate/source/srcvoxel/gps/angtype iso

CT applications
For CT applications, the GPU tracking is defined as an Actor.

Examples are provided within the GATE source package and users can find a complete example about How
To define and run a complete CT simulation set-up by using a GPU architecture.

IMPORTANT NOTE:

The scannerCT system, the digitizer and the CT deticated output are NOT available with the GPU CT
module. The CT detector must be define by using an actor as it is shown in the complete example provided
with the source.

#==
GPU Tracking
#==
/gate/actor/addActor GPUTransTomoActor gpuactor
/gate/actor/gpuactor/attachTo patient
/gate/actor/gpuactor/setGPUDeviceID 1
/gate/actor/gpuactor/setGPUBufferSize 10000000 # 1M buffer size = 400MB on the GPU
 # 5M = 760MB
 #10M = 1300MB

Optical applications
For optical applications, the GPU manages the particle tracking within the voxelized phantom and this is
why the source type is defined as a [GPUOpticalVoxel]. Examples are provided within the GATE source
package and users can find a complete example about How To define and run a complete optical simulation
set-up by using a GPU architecture.

#==
GPU Tracking for optical applications
V O X E L S O U R C E
GPU VERSION
#==
 /gate/source/addSource voxel GPUOpticalVoxel
 /gate/source/voxel/attachPhantomTo biolumi
 /gate/source/voxel/setGPUBufferSize 5000000
 /gate/source/voxel/setGPUDeviceID 1
 /gate/source/voxel/energy 6.0 eV

Retrieved from
"http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:How_to_use_Gate_on_a_GPU"

This page was last modified on 8 February 2016, at 12:18.

